|
支气管哮喘发病机制的研究新进展
|
Abstract:
支气管哮喘(简称哮喘)是由多种因素综合影响所致的以气道重塑、气道高反应性和气道慢性炎症为特征的一种异质性疾病,严重影响了患者的身心健康以及生活质量。近年来,国内外关于支气管哮喘发病机制的研究取得了重大进展,本文重点从外源性发病因素(包括生物因素、生态环境因素、营养因素、社会–心理因素)以及内源性发病因素(包括免疫因素、遗传因素)总结支气管哮喘发病机制的新发现,以期为哮喘的进一步研究及潜在问题提供帮助。
Bronchial asthma (asthma) is a heterogeneous disease characterized by airway remodeling, airway hyperresponsiveness and chronic airway inflammation caused by a combination of factors, which seriously affects the physical and mental health as well as the quality of life of patients. In recent years, significant progress has been made in the research on the pathogenesis of bronchial asthma at home and abroad. In this paper, we focus on the new findings on the pathogenesis of bronchial asthma from exogenous pathogenic factors (including biological factors, ecological and environ-mental factors, nutritional factors, and socio-psychological factors) and endogenous pathogenic fac-tors (including immune factors and genetic factors), in order to provide help for further research and potential problems of asthma.
[1] | 肖惠迪, 书文, 李梦龙, 等. 中国2011-2018年儿童哮喘患病率Meta分析[J]. 中国学校卫生, 2020, 41(8): 1208-1211. |
[2] | Lukkarinen, M., Koistinen, A., Turunen, R., et al. (2017) Rhinovirus-Induced First Wheezing Episode Predicts Atopic But Not Nonatopic Asthma at School Age. Journal of Allergy and Clinical Immunology, 140, 988-995.
https://doi.org/10.1016/j.jaci.2016.12.991 |
[3] | Wisniewski, J.A., Muehling, L.M., Eccles, J.D., et al. (2018) TH1 Signatures Are Present in the Lower Airways of Children with Severe Asthma, Regardless of Allergic Status. Journal of Allergy and Clinical Immunology, 141, 2048-2060.
https://doi.org/10.1016/j.jaci.2017.08.020 |
[4] | Hentschke, I., Graser, A., Melichar, V.O., et al. (2017) IL-33/ST2 Immune Responses to Respiratory Bacteria in Pediatric Asthma. Scientific Reports, 7, Article No. 43426. https://doi.org/10.1038/srep43426 |
[5] | Zegarra-Ruiz, D.F., Kim, D.V., Norwood, K., et al. (2021) Thymic Devel-opment of Gut-Microbiota-Specific T Cells. Nature, 594, 413-417. https://doi.org/10.1038/s41586-021-03531-1 |
[6] | Qian, L.-J., Kang, S.-M., Xie, J.-L., et al. (2017) Early-Life Gut Microbial Colonization Shapes Th1/Th2 Balance in Asthma Model in BALB/c Mice. BMC Microbiology, 17, Article No. 135. https://doi.org/10.1186/s12866-017-1044-0 |
[7] | Zhu, T.H., Zhu, T.R., Tran, K.A., Sivamani, R.K. and Shi, V.Y. (2018) Epithelial Barrier Dysfunctions in Atopic Dermatitis: A Skin-Gut-Lung Model Linking Microbiome Altera-tion and Immune Dysregulation. British Journal of Dermatology, 179, 570-581. https://doi.org/10.1111/bjd.16734 |
[8] | 杨昕. 抗生素暴露与环境因素影响哮喘发病的临床与基础研究[D]: [博士学位论文]. 杭州: 浙江大学, 2019. |
[9] | Sun, Y., Hou, J., Sheng, Y., et al. (2019) Modern Life Makes Children Allergic. A Cross-Sectional Study: Associations of Home Environment and Lifestyles with Asthma and Allergy among Children in Tianjin Region, China. International Archives of Occupational and Environmental Health, 92, 587-598. https://doi.org/10.1007/s00420-018-1395-3 |
[10] | Castner J, Barnett R, Moskos L H, et al. (2021) Home Environ-ment Allergen Exposure Scale in Older Adult Cohort with Asthma. Canadian Journal of Public Health, 112, 97-106. https://doi.org/10.17269/s41997-020-00335-0 |
[11] | Chen, X., Lin, H., Yang, D., et al. (2019) Early-Life Undernu-trition Reprograms CD4+ T-Cell Glycolysis and Epigenetics to Facilitate Asthma. Journal of Allergy and Clinical Immu-nology, 143, 2038-2051.
https://doi.org/10.1016/j.jaci.2018.12.999 |
[12] | Mangova, M., Lipek, T., vom Hove, M., et al. (2020) Obesi-ty-Associated Asthma in Childhood. Allergologie Select, 4, 76-85. https://doi.org/10.5414/ALX02178E |
[13] | 张瀚文, 翁育清. 肥胖型哮喘发病机制及治疗进展[J]. 岭南急诊医学杂志, 2022, 27(2): 200-202. |
[14] | 申艳, 李凯. 心理及社会因素对支气管哮喘影响的研究进展[J]. 医学综述, 2013, 19(15): 2784-2787. |
[15] | Miles, O.W. and Maren, S. (2019) Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights from Preclinical Models. Frontiers in Be-havioral Neuroscience, 13, Article 68. https://doi.org/10.3389/fnbeh.2019.00068 |
[16] | 朱贝贝. 社会心理压力对儿童哮喘的影响及机制[J]. 国际儿科学杂志, 2022, 49(5): 338-342. |
[17] | Lee, A., Leon Hsu, H.-H., Mathilda, Y.-H., et al. (2018) Prenatal Fine Particulate Exposure and Early Childhood Asthma: Effect of Maternal Stress and Fetal Sex. Journal of Allergy and Clinical Immunology, 141, 1880-1886.
https://doi.org/10.1016/j.jaci.2017.07.017 |
[18] | Fattore, G.L., de Souza Teles Santos, C.A. and Barreto, M.L. (2015) Socioeconomic and Environmental Determinants of Adolescent Asthma in Urban Latin America: An Ecological Analysis. Cadernos de Saúde Pública, 31, 2367-2378.
https://doi.org/10.1590/0102-311X00101414 |
[19] | 黄纯, 周林英, 谭丽琴, 等. 儿童支气管哮喘发病机制及相关治疗新进展[J]. 中国社区医师, 2019, 35(32): 6-8. |
[20] | Leite-de-Moraes, M., Belo, R., Dietrich, C., Soussan, D., Aubier, M. and Pretolani, M. (2020) Circulating IL-4, IFNγ and IL-17 Conventional and Innate-Like T-Cell Producers in Adult Asthma. Allergy, 75, 3283-3286.
https://doi.org/10.1111/all.14474 |
[21] | Andersson, C.K., Adams, A., Nagakumar, P., et al. (2017) Intraepithelial Neutrophils in Pediatric Severe Asthma Are Associated with Better Lung Function. Journal of Allergy and Clinical Im-munology, 139, 1819-1829.
https://doi.org/10.1016/j.jaci.2016.09.022 |
[22] | Granger, V., Taille, C., Roach, D., et al. (2020) Circulating Neutro-phil and Eosinophil Extracellular Traps Are Markers of Severe Asthma. Allergy, 75, 699-702. https://doi.org/10.1111/all.14059 |
[23] | Liu, W., Liu, S., Verma, M., et al. (2017) Mechanism of TH2/TH17-Predominant and Neutrophilic TH2/TH17-Low Subtypes of Asthma. Journal of Allergy and Clinical Immu-nology, 139, 1548-1558.
https://doi.org/10.1016/j.jaci.2016.08.032 |
[24] | Oliveria, J.-P., Salter, B.M., Phan, S., et al. (2017) Asthmatic Sub-jects with Allergy Have Elevated Levels of IgE+ B Cells in the Airways. Journal of Allergy and Clinical Immunology, 140, 590-593.
https://doi.org/10.1016/j.jaci.2016.12.981 |
[25] | Oliveria, J.-P., El-Gammal, A.I., Yee, M., et al. (2018) Changes in Regulatory B-Cell Levels in Bone Marrow, Blood, and Sputum of Patients with Asthma Following Inhaled Allergen Challenge. Journal of Allergy and Clinical Immunology, 141, 1495-1498. https://doi.org/10.1016/j.jaci.2017.11.013 |
[26] | Vroman, H., Bergen, I.M., van Hulst, J., et al. (2018) TNF-α-Induced Protein 3 Levels in Lung Dendritic Cells Instruct TH2 or TH17 Cell Differentiation in Eosinophilic or Neutrophilic Asthma. Journal of Allergy and Clinical Immunology, 141, 1620-1633. https://doi.org/10.1016/j.jaci.2017.08.012 |
[27] | Chairakaki, A.D., Saridaki, M.I., Pyrillou, K., et al. (2018) Plasmacytoid Dendritic Cells Drive Acute Asthma Exacerbations. Journal of Allergy and Clinical Immunology, 142, 542-556. https://doi.org/10.1016/j.jaci.2017.08.032 |
[28] | Mishra, A., Yao, X., Saxena, A., et al. (2018) Low-Density Lipoprotein Receptor-Related Protein 1 Attenuates House Dust Mite-Induced Eosinophilic Airway In-flammation by Suppressing Dendritic Cell-Mediated Adaptive Immune Responses. Journal of Allergy and Clinical Im-munology, 142, 1066-1079. https://doi.org/10.1016/j.jaci.2017.10.044 |
[29] | Hong, H., Liao, S., Chen, F., Yang, Q. and Wang, D.-Y. (2020) Role of IL-25, IL-33, and TSLP in Triggering United Airway Diseases toward Type 2 Inflam-mation. Allergy, 75, 2794-2804. https://doi.org/10.1111/all.14526 |
[30] | Kaur, D., Chachi, L., Gomez, E., et al. (2020) ST2 Expression and Release by the Bronchial Epithelium Is Downregulated in Asthma. Allergy, 75, 3184-3194. https://doi.org/10.1111/all.14436 |
[31] | 周晓鹰, 魏涛. 哮喘疾病中肥大细胞与气道平滑肌细胞的相互作用[J]. 常州大学学报(自然科学版), 2018, 30(4): 87-92. |
[32] | Kaur, D., Gomez, E., Doe, C., et al. (2015) IL-33 Drives Air-way Hyper-Responsiveness through IL-13-Mediated Mast Cell: Airway Smooth Muscle Crosstalk. Allergy, 70, 556-567. https://doi.org/10.1111/all.12593 |
[33] | 吴玉苗, 吴要伟, 朱万青, 等. 短链脂肪酸与儿童哮喘的关系及治疗研究进展[J]. 中国现代医学杂志, 2022, 32(16): 37-42. |
[34] | Thio, C.L.-P., Chi, P.-Y., Lai, A.-C.-Y. and Chang, Y.-J. (2018) Regulation of Type 2 Innate Lymphoid Cell-Dependent Airway Hyperreactivity by Butyrate. Journal of Allergy and Clinical Immunology, 142, 1867-1883.
https://doi.org/10.1016/j.jaci.2018.02.032 |
[35] | 程培培, 周启立, 任磊, 等. 支气管哮喘患儿血清25羟维生素D3水平变化及补充维生素D治疗对患儿发病、预后的影响研究[J]. 临床和实验医学杂志, 2021, 20(3): 323-326. |
[36] | 秦欣, 李爱民. 维生素D及其受体在儿童哮喘发病机制的研究进展[J]. 山东医药, 2020, 60(13): 96-99. |
[37] | Ntontsi, P., Photiades, A., Zervas, E., Xanthou, G. and Samitas, K. (2021) Genetics and Epigenetics in Asthma. International Journal of Molecular Sciences, 22, Article No. 2412. https://doi.org/10.3390/ijms22052412 |
[38] | 李丹, 范宇杭, 李耕旭, 等. GNA15对重型哮喘患儿预后的预测价值[J]. 实用医学杂志, 2022, 38(6): 758-762. |
[39] | Forno, E., Sordillo, J., Brehm, J., et al. (2017) Genome-Wide Inter-action Study of Dust Mite Allergen on Lung Function in Children with Asthma. Journal of Allergy and Clinical Immu-nology, 140, 996-1003.
https://doi.org/10.1016/j.jaci.2016.12.967 |
[40] | Stokholm, J., Chawes, B.L., Vissing, N., B?nnelykke, K. and Bis-gaard, D. (2018) Cat Exposure in Early Life Decreases Asthma Risk from the 17q21 High-Risk Variant. Journal of Al-lergy and Clinical Immunology, 141, 1598-1606.
https://doi.org/10.1016/j.jaci.2017.07.044 |
[41] | Hudon Thibeault, A.A. and Laprise, C. (2019) Cell-Specific DNA Methylation Signatures in Asthma. Genes, 10, Article No. 932. https://doi.org/10.3390/genes10110932 |
[42] | Forno, E., Wang, T., Qi, C., et al. (2019) DNA Methylation in Nasal Epithelium, Atopy, and Atopic Asthma in Children: A Genome-Wide Study. The Lancet Respiratory Medicine, 7, 336-346.
https://doi.org/10.1016/S2213-2600(18)30466-1 |
[43] | 李星, 李竹英, 田春燕, 张伟. microRNA与支气管哮喘相关性及中药调控机制研究进展[J]. 中国实验方剂学杂志, 2022, 28(14): 209-215. |