全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有恐惧效应与群体防御及捕食者种内竞争的捕食者–食饵动力学
Predator-Prey Dynamics with Fear Effects and Group Defense and Intraspecific Competition by the Predator

DOI: 10.12677/AAM.2023.124207, PP. 2035-2042

Keywords: 恐惧效应,种内竞争,极限环,跨临界分岔
Fear Effect
, Intraspecific Competition, Limit Ring, Transcritical Bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究食饵具有恐惧效应和群体防御与捕食者种内竞争的捕食者–食饵模型,分析了系统内部平衡点的存在性以及一定条件下平衡点的稳定性,找出了系统在边界平衡点发生跨临界分岔的条件,并利用Dulac判别法证明了系统在一定条件下不存在极限环。
In this paper, we study a prey with fear effect and group defense and predator species competition predator-prey model, analyze the existence of the system and the stability of the equilibrium point, find out the conditions of the transcritical bifurcation at the boundary equilibrium point, and use the Dulac discrimination to prove that the system has no limit ring under certain conditions.

References

[1]  Holt, A.R., Davies, Z.G., Claire, T., et al. (2008) Meta-Analysis of the Effects of Predation on Animal Prey Abundance: Evidence from UK Vertebrates. Public Library of Science, 3, e2400.
https://doi.org/10.1371/journal.pone.0002400
[2]  Cresswell, W. (2011) Predation in Bird Populations. Journal of Ornithology, 152, 251-263.
https://doi.org/10.1007/s10336-010-0638-1
[3]  Creel, S. and Christianson, D. (2008) Relationships between Di-rect Predation and Risk Effects. Trends in Ecology Evolution, 23, 194-201.
https://doi.org/10.1016/j.tree.2007.12.004
[4]  Ma, Z., Wang, S., Li, W. and Li, Z. (2013) The Effect of Prey Ref-uge in a Patchy Predator-Prey System. Mathematical Biosciences, 243, 126-130.
https://doi.org/10.1016/j.mbs.2013.02.011
[5]  Ko, W. and Ryu, K. (2006) Qualitative Analysis of a Predator-Prey Model with Holling Type II Functional Response Incorporating a Prey Refuge. Journal of Differential Equations, 231, 534-550.
https://doi.org/10.1016/j.jde.2006.08.001
[6]  Kar, T.K. (2005) Stability Analysis of a Prey-Predator Model Incor-porating a Prey Refuge. Communications in Nonlinear Science and Numerical Simulation, 10, 681-691.
https://doi.org/10.1016/j.cnsns.2003.08.006
[7]  Lima, S.L. (1998) Nonlethal Effects in the Ecology of Preda-tor-Prey Interactions. Bioscience, 48, 25-34.
https://doi.org/10.2307/1313225
[8]  Creel, S. and Christianson, D. (2008) Relationships between Direct Predation and Risk Effects. Tree, 23, 194-201.
https://doi.org/10.1016/j.tree.2007.12.004
[9]  Lima, S.L. (2010) Predators and the Breeding Bird: Behavioral and Reproductive Flexibility under the Risk of Predation. Biological Reviews, 84, 485-513.
https://doi.org/10.1111/j.1469-185X.2009.00085.x
[10]  Cresswell, W. (2011) Predation in Bird Populations. Journal of Ornithology, 152, 251-263.
https://doi.org/10.1007/s10336-010-0638-1
[11]  Maiti, A., et al. (2016) Deterministic and Stochastic Analysis of a Prey Predator Model with Herd Behaviour in Both. Systems Science & Control Engineering, 4, 259-269.
https://doi.org/10.1080/21642583.2016.1241194
[12]  Zanette, L.Y., et al. (2011) Perceived Predation Risk Reduc-es the Number of Off-Spring Songbirds Produce per Year. Science, 334, 1398-1401.
https://doi.org/10.1126/science.1210908
[13]  Creel, S., Christianson, D., Liley, S. and Winne, J.A. (2007) Preda-tion Risk Affects Reproductive Physiology and Demography of Elk. Science, 315, 960.
https://doi.org/10.1126/science.1135918
[14]  Wang, X.Y., et al. (2016) Modelling the Fear Effect in Predator Prey Interactions. Journal of Mathematical Biology, 73, 1179-1204.
https://doi.org/10.1007/s00285-016-0989-1
[15]  Ajraldi, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis: Real World Applications, 12, 2319-2338.
https://doi.org/10.1016/j.nonrwa.2011.02.002
[16]  Braza, P.A. (2012) Predator-Prey Dynamics with Square Root Functional Responses. Nonlinear Analysis: Real World Applications, 13, 1837-1843.
https://doi.org/10.1016/j.nonrwa.2011.12.014
[17]  Fred Brauer, Carlos Castillo-Chavez. 生物数学: 种群生物学与传染病学中的数学模型[M]. 北京: 清华大学出版社, 2013.
[18]  Ikbal, M. (2021) Dynamics of Predator-Prey Model Interaction with Intraspecific Competition. Journal of Physics: Conference Series, 1940, Article ID: 012006.
https://doi.org/10.1088/1742-6596/1940/1/012006
[19]  Swadesh, P. (2021) Spatiotemporal Pattern Formation in 2D Prey-Predator System with Nonlocal Intraspecific Competition. Communications in Nonlinear Science and Numeri-cal Simulation, 93, Article ID: 105478.
[20]  张伟年, 等. 常微分方程[M]. 北京: 高等教育出版社, 2014.
[21]  Pirayesh, B., Pazirandeh, A. and Akbari, M. (2016) Local Bifurcation Analysis in Nuclear Reactor Dynamics by Sotomayor’s Theorem. Annals of Nuclear Energy, 94, 716-731.
https://doi.org/10.1016/j.anucene.2016.04.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133