全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(3 + 1)维幂律3 Zakharov-Kuznetsov方程的行波解——兼论幂律n
Travelling Wave Solutions of a (3+1) Dimensional Zakharov-Kuznetsov Equation with Power Law 3—On Power Law n

DOI: 10.12677/AAM.2023.124206, PP. 2020-2034

Keywords: Zakharov-Kuznetsov方程,平衡点,行波解,幂律
Zakharov-Kuznetsov Equation
, Equilibrium, Travelling Wave Solution, Power Law

Full-Text   Cite this paper   Add to My Lib

Abstract:

借助于平面动力系统理论,定性分析了非线性(3 + 1)维幂律3 Zakharov-Kuznetsov方程的行波解,同时给出了行波解的分类及近似解计算方法。结合相关文献,整体上讨论了幂律为n时Zakharov-Kuznetsov方程的行波解,由此推广了本文及相应文献中的结果。
With the aid of the theory of planar dynamical system, it has qualitatively analysis travelling wave solutions of a nonlinear (3 + 1) dimensional Zakharov-Kuznetsov equation with power law 3. The classification and approximate calculation methods of travelling wave solutions are also derived. Combining corresponding literature, in general, travelling wave solutions the of Zakharov-Kuz- netsov equation with power law n are discussed. Therefore, it extends outcomes in this paper and corresponding literature.

References

[1]  李康, 刘希强. (2+1)维扩展Zakharov-Kuznetsov方程的对称﹑约化和精确解[J]. 井冈山大学学报(自然科学版), 2015, 36(3): 29-33.
[2]  Mohammed, K.E. (2015) Deriving the New Traveling Wave Solutions for the Nonlinear Dis-persive Equation, KdV-ZK Equation and Complex Coupled KdV System Using Extended Simplest Equation Method. Communications in Theoretical Physics, 64, 379-390.
https://doi.org/10.1088/0253-6102/64/4/379
[3]  傅海明, 戴正德. Zakharov-Kuznetsov方程的新精确解[J]. 周口师范学院学报, 2013, 30(5): 4-7.
[4]  Dong, Z.Z., Chen, Y. and Lang, Y.H. (2010) Symmetry Reduction and Exact Solutions of the (3+1)-Dimensional Zakharov-Kuznetsov Equa-tion. Chinese Physics B, 19, Article ID: 090205.
https://doi.org/10.1088/1674-1056/19/9/090205
[5]  崔艳英, 吕大昭, 刘长河. (3+1)维Zakharov-Kuznetsov方程的Wronskian形式解[J]. 北京建筑工程学院学报, 2012, 28(2): 68-71.
[6]  韦丽. 具有幂律非线性的(3+1)维Zakharov-Kuznetsov方程的行波解[J]. 应用数学进展, 2020, 9(9): 1426-1435.
[7]  Wei, L. and Ren, M.R. (2019) Bounded Traveling Wave Solutions of the (3+1)-Dimensional Zakharov-Kuznetsov Equation with Power Law Nonline-arity. Scholars Journal of Physics, Mathematics and Statistics, 7, 99-103.
https://doi.org/10.36347/sjpms.2020.v07i07.004
[8]  Moslem, W.M., Ali, S., Shukla, P.K., et al. (2007) Solitary, Explosive, and Periodic Solutions of the Quantum Zakharov-Kuznetsov Equation and Its Transverse Instability. Physics of Plasmas, 14, Article ID: 082308.
https://doi.org/10.1063/1.2757612
[9]  Lu, D.C., Seadawy, A.R., Arshad, M., et al. (2017) New Solitary Wave Solutions of (3+1)-Dimensional Nonlinear Extended Zakharov-Kuznetsov and Modified KdV-Zakharov-Kuznetsov Equations and Their Applications. Results in Physics, 7, 899-909.
https://doi.org/10.1016/j.rinp.2017.02.002
[10]  黄欣. 首次积分法下高维非线性偏微分方程新的行波解[J]. 四川师范大学学报(自然科学版), 2014, 37(3): 312-315.
[11]  Li, H., Sun, S.R. and Wang, K.M. (2011) Bifurcations of Traveling Wave Solutions for the Generalized Zakharov-Kuznetsov Equation. 2011 IEEE International Conference on Intelligent Computing and Intelligent Systems, Vol. 1, 102-107.
https://doi.org/10.1109/ICMT.2011.6002021
[12]  Zhang, W.B. and Zhou, J.B. (2012) Traveling Wave Solutions of a Generalized Zakharov-Kuznetsov Equation. ISRN Mathematical Analysis, 2012, Article ID: 107846.
https://doi.org/10.5402/2012/107846
[13]  冯庆江, 李岩, 杨利盎. 用试探函数法求Zakharov-Kuznetsov方程的孤子解[J]. 长春大学学报, 2010, 20(6): 8-9.
[14]  Yan, Z.L. and Liu, X.Q. (2006) Symmetry Reductions and Explicit Solutions for a Generalized Zakharov-Kuznetsov Equation. Communications in Theoretical Physics, 45, 29-32.
https://doi.org/10.1088/0253-6102/45/1/004
[15]  洪宝剑. KdV方程和Zakharov-Kuznetsov方程新的椭圆函数解[J]. 南京工程学院学报(自然科学版), 2010, 8(1): 1-7.
[16]  王双特, 于恒国. (3+1)维修正KdV-Zakharov-Kuznetsov方程的行波解[J]. 动力学与控制学报, 2022, 20(2): 36-44.
[17]  Feng, Z.S. (2002) The First Integral Method to Study the Burgers-Korteweg-de Vries Equation. Physics Letters A, 35, 343-349.
https://doi.org/10.1088/0305-4470/35/2/312
[18]  Feng, Z.S. (2003) The First Integral Method to the Two-Dimensional Burgers-Korteweg-de Vries Equation. Physics Letters A, 308, 173-178.
https://doi.org/10.1016/S0375-9601(03)00016-1
[19]  马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001: 115-116.
[20]  Huang, J.C., Gong, Y.J. and Chen, J. (2013) Multiple Bifurcations in a Preda-tor-Prey System of Holling and Leslie Type with Constant-Yield Prey Harvesting. International Journal of Bifurcation and Chaos, 23, Article ID: 1350164.
https://doi.org/10.1142/S0218127413501642
[21]  Liu, C.S. (2008) Direct Integral Method, Complete Discrimina-tion System for Polynomial and Applications to Classifications of All Single Traveling Wave Solutions to Nonlinear Dif-ferential Equations: A Survey.
[22]  Xiao, N.G. and Lou, S.Y. (2012) Bosonization of Supersymmetric KdV Equation. Physics Letters B, 707, 209-215.
https://doi.org/10.1016/j.physletb.2011.12.021
[23]  He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262.
https://doi.org/10.1016/S0045-7825(99)00018-3
[24]  Biazar, J. and Montazeri, R. (2005) A Computational Method for Solution of the Prey and Predator Problem. Applied Mathematics and Computation, 163, 841-847.
https://doi.org/10.1016/j.amc.2004.05.001
[25]  Wazwaz, A.-M. (2005) Adomian Decomposition Method for a Re-liable Treatment of the Bratu-Type Equations. Applied Mathematics and Computation, 166, 652-663.
https://doi.org/10.1016/j.amc.2004.06.059
[26]  Biazar, J., Babolian, E., Nouri, A. and Islam, R. (2003) An Alter-nate Algorithm for Computing Adomian Decomposition Method in Special Cases. Applied Mathematics and Computa-tion, 138, 523-529.
https://doi.org/10.1016/S0096-3003(02)00174-1
[27]  Biazar, J., Tango, M., Babolian, E. and Islam, R. (2003) So-lution of the Kinetic Modeling of Lactic Acid Fermentation Using Adomian Decomposition Method. Applied Mathemat-ics and Computation, 139, 249-258.
https://doi.org/10.1016/S0096-3003(02)00173-X
[28]  王双特, 于恒国. 利用同伦微扰法和Adomian分解法求解捕食生态模型[J]. 高师理科学刊, 2021, 41(7): 14-19.
[29]  楼智美, 王元斌, 俞立先. 一类强非线性二阶微分方程的多模态近似解析解研究[J]. 动力学与控制学报, 2019, 17(5): 463-466.
[30]  Durmaz, S., Altay, D.S. and Kaya, M.O. (2010) High Order Hamiltonian Approach to Nonlinear Oscillators. International Journal of Nonlinear Sci-ences and Numerical Simulation, 11, 565-570.
https://doi.org/10.1515/IJNSNS.2010.11.8.565
[31]  肖军均, 冯大河, 孟霞. 广义ZK-MEW方程的行波解分支[J]. 桂林电子科技大学学报, 2016, 36(1): 66-70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133