|
我国新能源汽车销量的长短期预测研究
|
Abstract:
近些年来,随着人们的环保意识与能源意识的增强,以及新能源汽车配套基础设施和相关鼓励政策的完善,新能源汽车的发展正在迎来一个爆发期。在当前时代背景下,预测和分析新能源汽车的产销情况已成为一个备受关注的研究方向,该方向的研究成果有利于更好地辅助政府、企业及个人等多方的决策。本文针对新能源汽车整体销量的预测,构建了年度销量灰色预测模型、季度销量ARIMA预测模型与月度销量SARIMA预测模型。长期和短期的预测结果均表明,新能源汽车发展势头良好,未来将占据更大的汽车市场份额,成为广大消费者的不二之选。
In recent years, with the increasing awareness of environmental protection and energy conserva-tion, as well as the improvement of supporting infrastructure and related encouragement policies for new energy vehicles, the development of new energy vehicles is entering an explosive period. In the current era, predicting and analyzing the production and sales of new energy vehicles has be-come a research direction that attracts much attention. The research results of this direction are conducive to better assisting the decision-making of governments, enterprises, individuals, and other parties. In order to predict the overall sales of new energy vehicles, this paper provides a grey forecasting model for the annual sales, an ARIMA forecasting model for the quarterly sales, and a SARIMA forecasting model for the monthly sales. The long-term and short-term forecasting results show that the development of new energy vehicles is promising and will occupy a larger share of the automobile market in the future, becoming the first choice for consumers.
[1] | Nerlove, M. (1957) A Note on Long-Run Automobile Demand. Journal of Marketing, 22, 57-64.
https://doi.org/10.1177/002224295702200109 |
[2] | Chen, D. (2011) Chinese Automobile Demand Prediction Based on ARIMA Model. 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, 15-17 October 2011, 2197-2201.
https://doi.org/10.1109/BMEI.2011.6098744 |
[3] | 胡彦君. ARIMA模型在汽车销量预测中的应用及SAS实现[J]. 河北企业, 2012(4): 11-12. |
[4] | 章旭. 基于时间序列分析的汽车销量预测研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017. |
[5] | 周彦福, 王红蕾. 我国新能源汽车月度销售量预测模型研究[J]. 软件导刊, 2019, 18(8): 149-153. |
[6] | 刘颖琦, 王萌, 王静宇. 中国新能源汽车市场预测研究[J]. 经济与管理研究, 2016, 37(4): 86-91. |
[7] | Andrawis, R.R., Atiya, A.F. and El-Shishiny, H. (2011) Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting. International Journal of Forecasting, 27, 870-886.
https://doi.org/10.1016/j.ijforecast.2010.05.019 |
[8] | 刘媛. 新能源汽车销量的长期与短期预测[D]: [硕士学位论文]. 长春: 吉林大学, 2020. |
[9] | 白一凡. 基于SARIMA和BP神经网络的新能源汽车销售预测[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2019. |
[10] | 王燕. 时间序列分析——基于R [M]. 第2版. 北京: 中国人民大学出版社, 2020: 145-146. |
[11] | 司守奎, 孙兆亮. 数学建模算法与应用[M]. 第2版. 北京: 国防工业出版社, 2015: 399-402. |