|
HPFRCC装配整体式叠合柱抗震性能研究
|
Abstract:
随着我国建筑工业的快速发展,对建筑结构的抗震性能的要求也随之越来越高。装配整体式是利用钢筋混凝土预制成的模板,模壳内浇筑混凝土后形成叠合柱。使用装配整体式叠合柱不仅仅可以节省用于制作模板的材料,更能减少支设模板的时间,更加减少了模壳的自重,更有利于工程吊装使用。同时,装配整体式叠合柱的核心后浇区采用现浇的方式与试件中的其他构件连接成整体,大大地改善了装配整体式结构中存在的整体性不足的缺点。为了改善装配整体式的抗震性能,将其外壳用HPFRCC制成。本文主要概括国内外装配整体式与HPFRCC的研究现状,并且基于研究现状得到相应的结论。
With the rapid development of building industry in our country, the requirement of seismic performance of building structures also becomes higher and higher. The assembly integral is the prefabricated form of reinforced concrete, and the composite column is formed after pouring concrete into the mold shell. The use of assembly of integral composite column can not only save the material used to make the template, but also reduce the time of setting up the template, and reduce the dead weight of the mold shell, which is more conducive to the engineering hoisting use. At the same time, the core post-casting area of the assembled integral composite column is connected with other components in the specimen by the way of cast-in-place, which greatly improves the shortcomings of the lack of integrity in the assembled integral structure. In order to improve the seismic performance of the whole assembly, the shell is made of high performance cement matrix composite material. This paper mainly summarizes the research status of assembled monolithic and high performance cement matrix composites at home and abroad, and draws corresponding conclusions based on the research status.
[1] | Chamila, G., et al. (2022) Comprehensive Review on Sustainable Fiber Reinforced Concrete Incorporating Recycled Textile Waste. Journal of Sustainable Cement-Based Materials, 11, 28-42.
https://doi.org/10.1080/21650373.2021.1875273 |
[2] | 段东超. 预制混凝土框架梁柱上锚下栓节点试验研究[D]: [硕士学位论文]. 天津: 天津大学, 2018. |
[3] | 宋玉普, 王军, 范国玺, 等. 预制装配式框架结构梁柱节点力学性能试验研究[J]. 大连理工大学学报, 2014, 54(4): 438-444. |
[4] | I.C. M, L. G, H. A, et al. (2022) A Review of Eggshell Powder and Fly Ash-Based Geopolymers Concrete. IOP Conference Series: Materials Science and Engineering, 1229, Article ID: 012011.
https://doi.org/10.1088/1757-899X/1229/1/012011 |
[5] | 张雪松, 李忠献. 低周反复循环荷载作用下装配整体式钢骨混凝土框架节点抗震性能试验研究[J]. 东南大学学报(自然科学版), 2005(S1): 1-4. |
[6] | 张大长, 支正东, 卢中强, 等. 外壳预制核心现浇RC梁抗弯承载力的试验研究[J]. 工程力学, 2009, 26(5): 164-170. |
[7] | 张昌舜. 预制钢筋混凝土永久性模板[J]. 建筑技术, 1985(2): 50. |
[8] | 徐世烺, 李贺东. HPFRCC研究进展及其工程应用[J]. 土木工程学报, 2008(6): 45-60. |
[9] | Ismail, A., Mohamed, K., et al. (2021) A Review on Alkali-Activated Slag Concrete. Ain Shams Engineering Journal, 12, 1475-1499. https://doi.org/10.1016/j.asej.2020.12.003 |
[10] | 王必元, 葛文杰, 周静静, 等. 工程水泥基复合材料的制备及力学性能[J]. 扬州大学学报(自然科学版), 2015, 18(3): 64-69. |
[11] | 车佳玲, 王俊, 刘海峰, 等. 沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J]. 吉林大学学报(工学版): 1-8. |
[12] | 米渊, 潘金龙, 周青山. 钢筋与纤维增强水泥基复合材料粘结性能试验研究[J]. 建筑结构, 2016, 46(15): 69-73. |
[13] | Wang, S. and Li, V.C. (2005) Polyvinyl Alcohol Fiber Reinforced Engineered Cementitious Composites: Material Design and Performances. Proceedings of Workshop on HPFRCC in Structural Applications, Honolulu, Hawaii, USA, 23-26. |
[14] | 邓宗才, 李建辉, 张小冬. 混杂FRP加固腐蚀混凝土柱抗震性能试验[J]. 北京工业大学学报, 2009, 35(10): 1356-1363. |
[15] | 宋文, 冯鹏, 黄福胜, 等. 纤维增强复合材料增强和修复加固大尺寸钢筋混凝土柱抗震性能研究[J]. 工业建筑, 2019, 49(9): 130-138. |
[16] | Darwin, R. and Usha, S. (2019) A Review Paper on Sustainable Cost Effective Concrete for Corrosive Environment. Civil and Environmental Research, 11, 40-47. |
[17] | Sandhya, K.S., Rajamurugadoss, D. and Prabhu, D.G.G. (2019) A Review Paper on Steel Fibre Reinforced Concrete. Journal of Trend in Scientific Research and Development, 3, 530-532. |
[18] | Shin, K.-J., Jang, K.-H., Choi, Y.-C., et al. (2015) Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties. ACI Materials Journal, 8, 1934-1950. https://doi.org/10.3390/ma8041934 |
[19] | Li, V.C. and Wang, S. (2002) Flexural Behaviors of Glass Fiber-Reinforced Polymer (GFRP) Reinforced Engineered Cementitious Composite Beams. ACI Materials Journal, 99, 11-21. https://doi.org/10.14359/11311 |
[20] | Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. (2005) Experimental Study on Seismic Behavior of High Performance Fiber-Reinforced Cement Composite Coupling Beams. ACI Structural Journal, 102, 159.
https://doi.org/10.14359/13541 |
[21] | Fukuyama, H., Matzuzaki, Y., et al. (2000) Structural Performance of Engineered Cementitious Composite Elements. 6th ASCCS International Conference on Steel-Concrete Composite Structures, Los Angeles, 22-24 March 2000, 969-976. |
[22] | 俞家欢, 杨楠, 赵同峰, 等. HPFRCC梁的力学性能试验研究[J]. 工业建筑, 2012, 42(S1): 553-557+552. |
[23] | 唐文涵, 何淅淅. 工程水泥基复合材料叠合层对梁受弯性能的影响[J]. 建筑结构, 2022, 52(6): 76-80+43. |
[24] | 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967. |
[25] | 汪梦甫, 张旭. 高轴压比下PVA-HPFRCC柱抗震性能试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(5): 1-9. |
[26] | 蔡景明, 潘金龙, 苏浩. 钢筋增强ECC-钢管混凝土组合柱抗震性能试验及其数值模拟[J]. 建筑结构学报, 2020, 41(7): 52-62. |
[27] | 吴桐, 邵永健, 李国建. 钢筋PVA-HPFRCC柱复合受扭性能试验研究及损伤分析[J]. 建筑结构, 2021, 42(6): 1-9. |
[28] | 韩建平, 文旭皓, 韩维丽. 钢-PVA混杂纤维增强混凝土轴压力学性能试验研究[J]. 混凝土, 2021(9): 45-49. |
[29] | 梁兴文, 邢朋涛, 刘贞珍, 等. 小跨高比纤维增强混凝土连梁抗震性能试验及受剪承载力研究[J]. 建筑结构学报, 2016, 37(8): 48-57. |
[30] | Qudah, S. and Maalej, M. (2014) Application of Engineered Cementitious Composites (HPFRCC) in Interior Beam-Column Connections for Enhanced Seismic Resistance. Engineering Structures, 69, 235-245.
https://doi.org/10.1016/j.engstruct.2014.03.026 |
[31] | Said, S.H. and Razak, H.A. (2016) Structural Behavior of RC Engineered Cementitious Composite (HPFRCC) Exterior Beam-Column Joints under Reversed Cyclic Loading. Construction and Building Materials, 107, 226-234.
https://doi.org/10.1016/j.conbuildmat.2016.01.001 |
[32] | 吕相蓉, 李秀领, 郭强, 等. 纤维增强水泥基复合材料装配式节点抗震性能研究[J]. 建筑科学, 2021, 37(9): 80-89. |
[33] | 袁方, 赵修远. FRP筋-钢筋增强HPFRCC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8): 55-65+144. |
[34] | 潘钻峰, 刘籍蔚, 吴 畅, 等. 外包配筋ECC组合柱抗震性能试验研究与有限元分析[J]. 建筑结构学报, 2017, 38(9): 38-45. |
[35] | 苏浩. 钢筋增强ECC-钢管混凝土叠合柱抗震性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2018. |