|
基于相机与激光雷达传感器融合的SLAM方法
|
Abstract:
针对SLAM系统中动态物体对机器人定位和建图造成的误差,提出将相机和激光雷达传感器数据进行融合的方法。采用DBSCAN非监督聚类方法对激光雷达点云进行聚类并分割,对分割后的物体采用改进的3D点云簇评分和匈牙利算法进行匹配,实现相邻帧之间的同一物体判别和物体运动状态的判断;通过统一相机和激光雷达坐标,将属于动态物体范围内的特征点滤除,达到提高后端位姿估计精度的效果。实验结果表明:在经过该融合后的SLAM系统,机器人的旋转误差和平移误差有了明显的下降,定位精度和建图效果得到较好提升。
Aiming at the errors caused by dynamic objects in the robot positioning and mapping in the SLAM system, a method of fusing camera and lidar sensor data is proposed. The DBSCAN unsupervised clustering method is used to cluster and segment the lidar point cloud, and the segmented object is matched with the improved 3D point cloud cluster score and the Hungarian algorithm to achieve similar Discriminate the same object between adjacent frames and judge the motion state of the object; by unifying the coordinates of the camera and lidar, the feature points belonging to the dynamic object range are filtered out to improve the accuracy of the back-end pose estimation. The experimental results show that after the fused SLAM system, the rotation error and translation error of the robot have been significantly reduced, and the positioning accuracy and mapping effect have been better improved.
[1] | Yu, C., Liu, Z., Liun X., et al. (2018) DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 01-05 October 2018. https://doi.org/10.1109/IROS.2018.8593691 |
[2] | Chen, X., Li, S., Mersch, B., et al. (2021) Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data. IEEE Robotics and Automation Letters, 6, 6529-6536.
https://doi.org/10.1109/LRA.2021.3093567 |
[3] | Ester, M., Kriegel, H.-P., Sander, J. and Xu, X.W. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, August 1996, 226-231. |
[4] | 杨慧林. 基于四线激光雷达的目标检测与跟踪算法研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2018. |
[5] | 孙浩博, 杨开明, 朱煜, 鲁森. 基于密度聚类的磁悬浮平面电机模态参数估计[J]. 清华大学学报: 自然科学版, 2023, 63(1): 33-43. |
[6] | 高翔. 视觉SLAM十四讲: 从理论到实践[M]. 北京: 电子工业出版社, 2017. |
[7] | 徐威扬. 跨指令集架构二进制漏洞搜索技术研究[D]: [硕士学位论文]. 长沙: 国防科学技术大学, 2017. |
[8] | 袁夏. 基于激光雷达的智能机器人环境理解关键技术研究[D]: [博士学位论文]. 南京: 南京理工大学, 2010. |
[9] | 张恒, 徐万红, 张禹. 激光雷达与深度相机融合的SLAM技术研究[J]. 机械工程师, 2020(7): 22-29. |
[10] | 张俐, 郭超朋, 刘京亮. CMM测量中基于确定采样策略的圆锥面拟合方法[J]. 测试技术学报, 2018, 32(1): 1-6. |
[11] | 徐陈, 周怡君, 罗晨. 动态场景下基于光流和实例分割的视觉SLAM方法[J]. 光学学报, 2022, 42(14): 139-151. |
[12] | Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D. (2015) ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31, 1147-1163. https://doi.org/10.1109/TRO.2015.2463671 |
[13] | Mur-Artal, R. and Tardos, J.D. (2017) ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, 33, 1255-1262. https://doi.org/10.1109/TRO.2017.2705103 |
[14] | 艾青林, 王威, 刘刚江. 室内动态环境下基于网格分割与双地图耦合的RGB-D SLAM算法[J]. 机器人, 2022, 44(4): 431-442. |