全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

促泌素在糖尿病中的研究进展
Research Progress of Secretagogin in Diabetes Mellitus

DOI: 10.12677/ACM.2023.134967, PP. 6905-6910

Keywords: 促泌素,钙调蛋白,胰岛细胞,糖尿病
Secretagogin
, Calmodulin, Islet Cells, Diabetes Mellitus

Full-Text   Cite this paper   Add to My Lib

Abstract:

促泌素是一种新型钙调节蛋白,在全身各器官系统均有表达,在应激反应、神经内分泌肿瘤等中的作用被广泛关注。有研究发现,促泌素高表达于胰岛β细胞,其参与胰岛素分泌、胰岛细胞增殖等。本文总结相关文献内容,介绍促泌素在糖尿病发生发展中的研究进展,为进一步临床研究提供相关依据。
Secretagogin is a novel calmodulin, which is expressed in various organ systems throughout the body, and role in stress response and neuroendocrine tumors has been widely concerned. Studies have found that secretagogin is highly expressed in islet beta cells, which is involved in insulin se-cretion, islet cell proliferation and so on. In this paper, relevant literature is summarized to intro-duce the research progress of cretin in the occurrence and development of diabetes mellitus, so as to provide relevant evidence for further clinical research.

References

[1]  Cho, N.H., Shaw, J.E., Karuranga, S., et al. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281.
https://doi.org/10.1016/j.diabres.2018.02.023
[2]  Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119.
https://doi.org/10.1016/j.diabres.2021.109119
[3]  Wagner, L., Oliyarnyk, O., Gartner, W., et al. (2000) Cloning and Expression of Secretagogin, a Novel Neuroendocrine- and Pancreatic Islet of Langerhans-Specific Ca2+-Binding Protein. Journal of Biological Chemistry, 275, 24740- 24751.
https://doi.org/10.1074/jbc.M001974200
[4]  Tan, W.S.D., Lee, J.J., Satish, R.L., et al. (2012) Detectability of Secretagogin in Human Erythrocytes. Neuroscience Letters, 526, 59-62.
https://doi.org/10.1016/j.neulet.2012.08.006
[5]  Zierhut, B., Daneva, T., Gartner, W., et al. (2005) Setagin and Secretagogin-R22: Posttranscriptional Modification Products of the Secretagogin Gene. Biochemical and Bi-ophysical Research Communications, 329, 1193-1199.
https://doi.org/10.1016/j.bbrc.2005.02.093
[6]  Lai, M., Lü, B., Xing, X., et al. (2006) Secretagogin, a Novel Neuroendocrine Marker, Has a Distinct Expression Pattern from Chromogranin A. Virchows Archiv, 449, 402-409.
https://doi.org/10.1007/s00428-006-0263-9
[7]  Puthussery, T., Gayet-Primo, J. and Taylor, W.R. (2010) Locali-zation of the Calcium-Binding Protein Secretagogin in Cone Bipolar Cells of the Mammalian Retina. Journal of Compar-ative Neurology, 518, 513-525.
https://doi.org/10.1002/cne.22234
[8]  Bergg?rd, T., Miron, S., Onnerfjord, P., et al. (2002) Calbindin D28k Ex-hibits Properties Characteristic of a Ca2+ Sensor. Journal of Biological Chemistry, 277, 16662-16672.
https://doi.org/10.1074/jbc.M200415200
[9]  Schwaller, B., Durussel, I., Jermann, D., et al. (1997) Comparison of the Ca2+-Binding Properties of Human Recombinant Calretinin-22k and Calretinin. Journal of Biological Chemistry, 272, 29663-29671.
https://doi.org/10.1074/jbc.272.47.29663
[10]  Lee, J.J., Yang, S.Y., Park, J., et al. (2017) Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Scien-tific Reports, 7, Article No. 6976.
https://doi.org/10.1038/s41598-017-07072-4
[11]  Rorsman, P., Eliasson, L., Renstrom, E., et al. (2000) The Cell Physiology of Biphasic Insulin Secretion. Physiology, 15, 72-77.
https://doi.org/10.1152/physiologyonline.2000.15.2.72
[12]  Rorsman, P. and Renstr?m, E. (2003) Insulin Granule Dynamics in Pancreatic Beta Cells. Diabetologia, 46, 1029-1045.
https://doi.org/10.1007/s00125-003-1153-1
[13]  Nevins, A.K. and Thurmond, D.C. (2003) Glucose Regulates the Cortical Actin Network through Modulation of Cdc42 Cycling to Stimulate Insulin Secretion. American Journal of Physiology-Cell Physiology, 285, C698-C710.
https://doi.org/10.1152/ajpcell.00093.2003
[14]  Henquin, J.C., Mourad, N.I. and Nenquin, M. (2012) Disruption and Stabilization of β-Cell Actin Microfilaments Differently Influence Insulin Secretion Triggered by Intracellular Ca2+ Mobilization or Store-Operated Ca2+ Entry. FEBS Letters, 586, 89-95.
https://doi.org/10.1016/j.febslet.2011.11.030
[15]  Rondas, D., Tomas, A. and Halban, P.A. (2011) Focal Adhesion Remodeling Is Crucial for Glucose-Stimulated Insulin Secretion and Involves Activation of Focal Adhesion Kinase and Paxillin. Diabetes, 60, 1146-1157.
https://doi.org/10.2337/db10-0946
[16]  Rondas, D., Tomas, A., Soto-Ribeiro, M., et al. (2012) Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-Stimulated Insulin Secretion. Journal of Biological Chemistry, 287, 2423-2436.
https://doi.org/10.1074/jbc.M111.279885
[17]  Rogstam, A., Linse, S., Lindqvist, A., et al. (2007) Binding of Cal-cium Ions and SNAP-25 to the Hexa EF-Hand Protein Secretagogin. Biochemical Journal, 401, 353-363.
https://doi.org/10.1042/BJ20060918
[18]  Chen, Y.A. and Scheller, R.H. (2001) SNARE-Mediated Membrane Fu-sion. Nature Reviews Molecular Cell Biology, 2, 98-106.
https://doi.org/10.1038/35052017
[19]  Poirier, M.A., Xiao, W., Macosko, J.C., et al. (1998) The Synaptic SNARE Complex Is a Parallel Four-Stranded Helical Bundle. Na-ture Structural Biology, 5, 765-769.
https://doi.org/10.1038/1799
[20]  Sutton, R.B., Fasshauer, D., Jahn, R., et al. (1998) Crystal Structure of a SNARE Complex Involved in Synaptic Exocytosis at 2.4 ? Resolution. Nature, 395, 347-353.
https://doi.org/10.1038/26412
[21]  Qin, J., Liu, Q., Liu, Z., et al. (2020) Structural and Mechanistic In-sights into Secretagogin-Mediated Exocytosis. Proceedings of the National Academy of Sciences, 117, 6559-6570.
https://doi.org/10.1073/pnas.1919698117
[22]  Müller, T.D., Finan, B., Bloom, S.R., et al. (2019) Glucagon-Like Peptide 1 (GLP-1). Molecular Metabolism, 30, 72-130.
https://doi.org/10.1016/j.molmet.2019.09.010
[23]  Biancolin, A.D., Jeong, H., Mak, K.W.Y., et al. (2022) Dis-rupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of type 2 Diabetes. Endocrinol-ogy, 163, bqac118.
https://doi.org/10.1210/endocr/bqac118
[24]  Hansson, S.F., Zhou, A.X., Vachet, P., et al. (2018) Secretagogin Is Increased in Plasma from Type 2 Diabetes Patients and Potentially Reflects Stress and Islet Dys-function. PLOS ONE, 13, e0196601.
https://doi.org/10.1371/journal.pone.0196601
[25]  杨靖, 赵志波, 吴丽, 项孙敏, 李骄阳, 颜斌, 肖新华. 胰岛素强化治疗对新发2型糖尿病非肥胖患者血浆促泌素的影响[J]. 实用医学杂志, 2019, 35(8): 1288-1291.
[26]  Yang, C., Qu, H., Zhao, X., et al. (2021) Plasma Secretagogin Is Increased in Individuals with Glucose Dysregulation. Experimental and Clinical Endocrinology & Diabetes, 129, 661-665.
https://doi.org/10.1055/a-1001-2244
[27]  Deischinger, C., Harreiter, J., Leitner, K., et al. (2020) Secretagogin Is Related to Insulin Secretion but Unrelated to Gestational Diabetes Mellitus Status in Pregnancy. Journal of Clinical Med-icine, 9, 2277.
https://doi.org/10.3390/jcm9072277
[28]  Xu, Y., Toomre, D.K., Bogan, J.S., et al. (2017) Excess Cholesterol In-hibits Glucose-Stimulated Fusion Pore Dynamics in Insulin Exocytosis. Journal of Cellular and Molecular Medicine, 21, 2950-2962.
https://doi.org/10.1111/jcmm.13207
[29]  Bogan, J.S., Xu, Y. and Hao, M. (2012) Cholesterol Accumulation In-creases Insulin Granule Size and Impairs Membrane Trafficking. Traffic, 13, 1466-1480.
https://doi.org/10.1111/j.1600-0854.2012.01407.x
[30]  Kong, F.J., Wu, J.H., Sun, S.Y., et al. (2017) The Endo-plasmic Reticulum Stress/Autophagy Pathway Is Involved in Cholesterol-Induced Pancreatic β-Cell Injury. Scientific Re-ports, 7, Article No. 44746.
https://doi.org/10.1038/srep44746
[31]  Kataoka, H.U. and Noguchi, H. (2013) ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation. Cell Medicine, 5, 53-57.
https://doi.org/10.3727/215517913X666512
[32]  Yang, J., Lv, Y., Zhao, Z., et al. (2019) A mi-croRNA-24-to-Secretagogin Regulatory Pathway Mediates Cholesterol-Induced Inhibition of Insulin Secretion. Interna-tional Journal of Molecular Medicine, 44, 608-616.
https://doi.org/10.3892/ijmm.2019.4224
[33]  Hasegawa, K., Wakino, S., Kimoto, M., et al. (2013) The Hydrolase DDAH2 Enhances Pancreatic Insulin Secretion by Transcriptional Regulation of Secretagogin through a Sirt1-Dependent Mechanism in Mice. The FASEB Journal, 27, 2301-2315.
https://doi.org/10.1096/fj.12-226092
[34]  Malenczyk, K., Girach, F., Szodorai, E., et al. (2017) A TRPV 1-to-Secretagogin Regulatory Axis Controls Pancreatic β-Cell Survival by Modulating Protein Turnover. The EMBO Journal, 36, 2107-2125.
https://doi.org/10.15252/embj.201695347
[35]  Sharma, A.K., Khandelwal, R., Kumar, M.J.M., et al. (2019) Se-cretagogin Regulates Insulin Signaling by Direct Insulin Binding. Iscience, 21, 736-753.
https://doi.org/10.1016/j.isci.2019.10.066

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133