全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钴掺杂生物炭活化过硫酸盐特征及其对污染物降解的研究
Study on the Characteristics of Activated Peroxymonosulfate and Its Degradation of Pollutants by Cobalt-Doped Biochar

DOI: 10.12677/MS.2023.134041, PP. 358-367

Keywords: 污泥基生物炭,四氧化三钴,高级氧化,过硫酸盐,硫酸根自由基
Sludge Biochar
, Cobalt Tetroxide, Advanced Oxidation Processes, Peroxymonosulfate, Sulfate Radical

Full-Text   Cite this paper   Add to My Lib

Abstract:

以污泥基生物炭和Co(NO3)2为原材料,采用共沉淀法制备了污泥基生物炭掺杂Co3O4 (BS-Co3O4)催化剂,用于活化过硫酸盐(PMS)降解四环素(TC)。通过SEM、TEM、XRD、N2吸附–脱附、XPS等表征方法,对BS-Co3O4的表面形态、晶体类型、比表面积和元素价态组成进行分析,系统研究了BS-Co3O4投加量、PMS投加量和pH对TC降解的影响,并通过重复性实验考察了材料的稳定性。结果表明,经生物炭改性后,BS-Co3O4的比表面积显著提升(从14.54 m2?g?1到111.92 m2?g?1),其负载的Co3O4纳米颗粒的平均粒径减小,有利于活性位点的暴露,另一方面,改性后的BS-Co3O4中Co(II)的相对含量也得到提升,有利于Co(II)与Co(Ш)的氧化循环,从而显著改善了BS-Co3O4对PMS的活化性能。对于初始浓度为0.1 mmol?L?1的TC,BS-Co3O4的投加量为0.2 g?L?1,PMS的投加量为0.5 mmol?L?1,在60分钟内TC的去除率可达到93.15%。该体系有较宽的pH适用范围(pH = 3~11)。自由基淬灭实验结果表明,BS-Co3O4在活化PMS过程中,产生了\"\"\"\"1O2等活性物种,其中\"\"1O2对TC的去除起主要作用。
Using sludge-based biochar and Co(NO3)2 as raw materials, a biochar-doped Co3O4 (BS-Co3O4) catalyst was prepared by coprecipitation method and used for the activation of peroxymonosulfate (PMS) to degrade tetracycline (TC). The surface morphology, crystal type, specific surface area and the valence of elements were characterized by SEM, XRD, N2 adsorption-desorption isotherms and XPS. The effects of BS-Co3O4 dosage, PMS dosage and pH on the degradation of TC in BS-Co3O4/PMS system were studied. The results showed that the surface of BS-Co3O4 was loose and porous and Co3O4 nanoparticles were uniformly dispersed in the biochar. The introduction of biochar significantly improved the specific surface area of the catalyst (from 14.54 m2?g?1 to 111.92 m2?g?1), reduced the particle size of

References

[1]  Zeng, T., Zhang, X., Wang, S., et al. (2015) Spatial Confinement of a Co3O4 Catalyst in Hollow Metal-Organic Frameworks as a Nanoreactor for Improved Degradation of Organic Pollutants. Environmental Science & Technology, 49, 2350-2357.
https://doi.org/10.1021/es505014z
[2]  徐源洲, 张力浩, 方成, 等. 优化SO4高级氧化技术修复PAHs复合污染土壤[J]. 中国环境科学, 2020, 40(3): 1183-1190.
[3]  Hu, P. and Long, M. (2016) Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Applied Catalysis B: Environmental, 181, 103-117.
https://doi.org/10.1016/j.apcatb.2015.07.024
[4]  Chen, L., Cai, T., Sun, W., et al. (2017) Mesoporous Bouquet-Like Co3O4 Nanostructure for the Effective Heterogeneous Activation of Peroxymonosulfate. Journal of the Taiwan Institute of Chemical Engineers, 80, 720-727.
https://doi.org/10.1016/j.jtice.2017.09.007
[5]  Tao, Z., Zhang, X., Wang, S., et al. (2015) Spatial Confinement of a Co3O4 Catalyst in Hollow Metal-Organic Frameworks as a Nanoreactor for Improved Degradation of Organic Pollutants. Environmental Science & Technology, 49, 2350-2357.
https://doi.org/10.1021/es505014z
[6]  Liu, T., Zhang, L., You, W., et al. (2018) Core-Shell Nitrogen-Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High-Performance Supercapacitor. Small, 14, Article ID: 1702407.
https://doi.org/10.1002/smll.201702407
[7]  Feng, Y., Liu, J., Wu, D., et al. (2015) Efficient Degradation of Sulfamethazine with CuCo2O4 Spinel Nanocatalysts for Peroxymonosulfate Activation. Chemical Engineering Journal, 280, 514-524.
https://doi.org/10.1016/j.cej.2015.05.121
[8]  Shi, P., Su, R., Wan, F., et al. (2012) Co3O4 Nanocrystals on Graphene Oxide as a Synergistic Catalyst for Degradation of Orange II in Water by Advanced Oxidation Technology Based on Sulfate Radicals. Applied Catalysis B: Environmental, 123-124, 265-272.
https://doi.org/10.1016/j.apcatb.2012.04.043
[9]  Wurz, A., Kuchta, K. and Onay, T.T. (2011) Review on Municipal Sewage Sludge Management in Turkey and Europe. International Journal of Global Warming, 3, 116-128.
https://doi.org/10.1504/IJGW.2011.038374
[10]  Wang, X., Gu, L., Zhou, P., et al. (2017) Pyrolytic Temperature Dependent Conversion of Sewage Sludge to Carbon Catalyst and Their Performance in Persulfate Degradation of 2-Naphthol. Chemical Engineering Journal, 324, 203-215.
https://doi.org/10.1016/j.cej.2017.04.101
[11]  董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657.
[12]  王渊源, 阎鑫, 艾涛, 等. 碳化泡沫负载Co3O4活化过硫酸盐降解罗丹明B [J]. 环境科学, 2022, 43(4): 2039-2046.
[13]  聂鹂尧, 胡凯, 汪昊睿, 等. 污泥生物炭活化过硫酸盐降解磺胺嘧啶的研究[J]. 生态与农村环境学报, 2022, 38(9): 1165-1173.
[14]  Chen, L., Yang, S., Zuo, X., et al. (2018) Biochar Modification Significantly Promotes the Activity of Co3O4 towards Heterogeneous Activation of Peroxymonosulfate. Chemical Engineering Journal, 354, 856-865.
https://doi.org/10.1016/j.cej.2018.08.098
[15]  Carvalho, F., et al. (2005) Oxone-Promoted Wet Air Oxidation of Landfill Leachates. Industrial & Engineering Chemistry Research, 44, 749-758.
https://doi.org/10.1021/ie0401511
[16]  Li, J., Zhu, W., Gao, Y., et al. (2021) The Catalyst Derived from the Sulfurized Co-Doped Metal-Organic Framework (MOF) for Peroxymonosulfate (PMS) Activation and Its Application to Pollutant Removal. Separation and Purification Technology, 285, Article ID: 120362.
https://doi.org/10.1016/j.seppur.2021.120362
[17]  苏冰琴, 刘一清, 林昱廷, 等. Fe3O4活化过硫酸盐体系同步去除诺氟沙星和铅[J]. 中国环境科学, 2022, 42(2): 717-727.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133