The compounds have been synthesized and characterized by routine MS, IR and NMR spectrometry methods. The compounds are all active on bacterial strains with the exception of Salmonella typhimirium, with a MIC value of 7.5 mg/mL. They show a percentage of anti-radical activity of 75.476 ± 5.070 for the compound DAN-S and of 68.142 ± 6.539 for the compound DAN-OV. The compounds are sensitive to the two champions used. DAN-S compound is then the most active.
References
[1]
Jadoo, B., Booysen, I.N. and Akerman, M.P. (2017) Synthesis, Characterization and DNA Binding Studies of Rhenium(I) and (V) Compounds with Schiff Bases Derived From 4-Aminotetrahydropyran. Polyhedron, 126, 159-165. https://doi.org/10.1016/j.poly.2017.01.037
[2]
Grivani, G., Tahmasebi, V., Eskandari, K., Khalaji, A.D., Bruno, G. and Rudbari, H.A. (2013) Synthesis, Characterization, Crystal Structure Determination and Computational Study of the Two New Bidentate O, N Schiff Bases Derived from Bromosalicylaldehyde and Amines Containing Alkyl Halide Pendant Groups. Journal of Molecular Structure, 1054-1055, 100-106. https://doi.org/10.1016/j.molstruc.2013.09.026
[3]
Paul, L.E.H., Foehn, I.C., Schwarzer, A., Brendler, E. and Böhme, U. (2014) Salicylaldehyde-(2-Hydroxyethyl)Imine—A Flexible Ligand for Group 13 and 14 Elements. Inorganica Chimica Acta, 423, 268-280. https://doi.org/10.1016/j.ica.2014.08.026
[4]
Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. and Meunier, B. (1996) Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. Inorganic Chemistry, 35, 387-396. https://doi.org/10.1021/ic950700i
[5]
Solomon, E.I. and Lowery, M.D. (1993) Electronic Structure Contributions to Function in Bioinorganic Chemistry. Science, 259, 1575-1581. https://doi.org/10.1126/science.8384374
[6]
Tümer, M., Köksal, H., Serin, S. and Digˉrak, M. (1999) Antimicrobial Activity Studies of Mononuclear and Binuclear Mixed-Ligand Copper(II) Complexes Derived from Schiff Base Ligands and 1,10-Phenanthroline. Transition Metal Chemistry, 24, 13-17. https://doi.org/10.1023/A:1006996722406
[7]
Sawada, H., Yanagida, K., Inaba, Y., Sugiya, M., Kawase, T. and Tomita, T. (2001) Synthesis and Antibacterial Activity of Novel Fluoroalkyl End-Capped Cooligomers Containing Dimethyl(Octyl)Ammonium Segments. European Polymer Journal, 37, 1433-1439. https://doi.org/10.1016/S0014-3057(01)00005-2
[8]
Ma, D.-Y., Zhang, L.-X., Rao, X.-Y., Wu, T.-L., Li, D.-H. and Xie, X.-Q. (2013) Synthesis, Characterization, Luminescence, Antibacterial, and Catalytic Activities of a Palladium(II) Complex Involving a Schiff Base. Journal of Coordination Chemistry, 66, 1486-1496. https://doi.org/10.1080/00958972.2013.783699
[9]
Siddiqui, J.I., Iqbal, A., Ahmad, S. and Weaver, W. (2006) Synthesis and Spectroscopic Studies of New Schiff Bases. Molecules, 11, 206-211. https://doi.org/10.3390/11020206
[10]
Sharma, M., Joshi, P., Kumar, N., Joshi, S., Rohilla, R.K., Roy, N. and Rawat, D.S. (2011) Synthesis, Antimicrobial Activity and Structure—Activity Relationship Study of N,N-Dibenzyl-Cyclohexane-1,2-Diamine Derivatives. European Journal of Medicinal Chemistry, 46, 478-480. https://doi.org/10.1016/j.ejmech.2010.11.027
[11]
Kangah, N.J.-B., Kodjo, C.G., Ouattara, Z.A., Kablan, A.L.C., Dibi, K.J., Kouame, B.A. and Ziao, N. (2017) Synthesis, Characterization and Biological Evaluation of New Series of Schiff Bases Derived from Hexamethylenediamine as Potential Antibacterial and Antifungal Agents. IRA-International Journal of Applied Sciences, 7. 69-74. https://doi.org/10.21013/jas.v7.n2.p3
[12]
Kangah, N.J.-B., Kodjo, C.G., Kablan, A.L.C., Koné, M.W., Angora, R.C.A. and Ziao, N. (2017) Synthesis, Characterization and Antimicrobial Evaluation of Symmetric Α-Diimine Schiff Bases Derived from Cis and Trans Racemic Mixture of Cyclohexanediamine. IRA-International Journal of Applied Sciences, 6, 23-30. https://doi.org/10.21013/jas.v6.n1.p4
[13]
Pryor, W.A. (1986) Cancer and Free Radicals. In: Shankel, D.M., Hartman, P.E., Kada, T., Hollaender, A., Wilson, C.M. and Kuny, G., Eds., Antimutagenesis and Anticarcinogenesis Mechanisms. Basic Life Sciences, Vol. 39, Springer, Boston, 45-59. https://doi.org/10.1007/978-1-4684-5182-5_4
[14]
Montagnier, L., Olivier, R. and Parquier, C. (1998) Oxidative Stress in Cancer, AIDS, and Neurodegenerative Diseases. Marcel Dekker, New York, 546.
[15]
Avadanei, M., Tigoianu, R., Serpa, C., Pina, J. and Cozan, V. (2017) Conformational Aspects of the Photochromic Reactivity of Two N-Salicylidene Aniline Derivatives in a Polymer Matrix. Journal of Photochemistry and Photobiology A: Chemistry, 332, 475-486. https://doi.org/10.1016/j.jphotochem.2016.09.024
[16]
Özdemir, Ö. (2016) Novel Symmetric Diimine-Schiff Bases and Asymmetric Triimine-Schiff Bases as Chemosensors for the Detection of Various Metal Ions. Journal of Molecular Structure, 1125, 260-271. https://doi.org/10.1016/j.molstruc.2016.06.074
[17]
Blois, M.S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
[18]
Padmanabhan, P. and Jangle, S.N. (2012) Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. International Journal of Pharmaceutical Sciences and Drug Research, 4, 143-146.
[19]
Popovici, C., Saykova, I. and Tylkowsk, B. (2009) Evaluation de l’activité antioxydant des composés phénoliques par la réactivité avec le radical libre DPPH. Revue de Génie Industriel, 4, 25-39.
[20]
Molyneux, P. (2004) The Use of Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin Journal of Science and Technology, 26, 211-219.
[21]
Maataoui, B.S., Myene, A. and Hilali, S. (2006) Activités anti-radicalaires d’extraits de jus de fruits du figuier de barbarie (Opuntia ficus indica). Lebanese Science Journal, 7, 3-8.
[22]
Lopes-Lutz, D., Alviano, D.S., Alviano, C.S. and Kolodziejczyk, P.P. (2008) Screening of Chemical Composition, Antimicrobial and Antioxidant Activities of Artemisia Essential Oils. Phytochemistry, 69, 1732-1738. https://doi.org/10.1016/j.phytochem.2008.02.014
[23]
Athamena, S., Chalghem, I., Kassah-Laouar, A., Laroui, S. and Khebri, S. (2010) Activité antioxydante et antimicrobienne d’extraits de Cuminum cyminum L. Lebanese Science Journal, 11, 69-81.
[24]
Bougandoura, N. and Bendimerad, N. (2013) Evaluation de l’activite antioxydante des extraits aqueux et methanolique de Satureja calamintha ssp. Nepeta (L.) Briq. Nature & Technologie, 9, 14-19.
[25]
Silverstein, R.M. and Bassler, G.C. (2016) Spectrometric Identification of Organic Compounds. 3rd Edition, De Boeck Superieur, Louvain-la-Neuve, 175.