全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Destabilization of HIF-1a by Diabetes, Oxidative Stress, Obesity and Other Related Disorders

DOI: 10.4236/jdm.2023.132012, PP. 142-162

Keywords: HIF-1a, Diabetes, Oxidative Stress, Obesity, Cancer, Angiogenesis, Mitochondria

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the most fundamental molecular processes in response to hypoxia is the activation and stabilization of a transcriptional factor called hypoxia induced factor 1a (HIF-1a), which is responsible for the regulation of many downstream effector genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes. This article discusses the role of hypoxia-inducible factor 1a (HIF-1a) in metabolic and pathological processes, particularly in adipose tissue, oxidative stress, inflammation, diabetes and cancer. HIF1A is a basic helix-loophelix PAS domain containing protein, and is considered as the master transcriptional regulator of cellular and developmental response to hypoxia. HIF-1a regulates the expression of genes involved in angiogenesis, glucose metabolism, inflammation and oxidative stress. In obesity, adipose tissue hypoxia leads to increased expression of HIF-1a, which can lead to chronic inflammation and adipose tissue dysfunction. Another field that HIF-1a is also involved in cancer pathogenesis pathways, such as proliferation, invasion, angiogenesis, and metastasis, and is considered a potential therapeutic target for metabolic/genetic diseases and cancer. Direct and indirect HIF-1 inhibitors have been identified, but only a few have entered clinical trials due to their multiple side effects.

References

[1]  Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-PAS Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510-5514.
https://doi.org/10.1073/pnas.92.12.5510
[2]  Iyer, N.V., Kotch, L.E., Agani, F., et al. (1998) Cellular and Developmental Control of O2 Homeostasis by Hypoxia-Inducible Factor 1 Alpha. Genes & Development, 12, 149-162.
https://doi.org/10.1101/gad.12.2.149
[3]  Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732.
https://doi.org/10.1038/nrc1187
[4]  Hogenesch, J.B., Chan, W.K., Jackiw, V.H., et al. (1997) Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway. Journal of Biological Chemistry, 272, 8581-8593.
https://doi.org/10.1074/jbc.272.13.8581
[5]  Iyer, N.V., Leung, S.W. and Semenza, G.L. (1998) The Human Hypoxia-Inducible Factor 1alpha Gene: HIF1A Structure and Evolutionary Conservation. Genomics, 52, 159-165.
https://doi.org/10.1006/geno.1998.5416
[6]  Semenza, G.L. (1999) Regulation of Mammalian O2 Homeostasis by Hypoxia-Inducible Factor 1. Annual Review of Cell and Developmental Biology, 15, 551-578.
https://doi.org/10.1146/annurev.cellbio.15.1.551
[7]  Semenza, G.L. (2000) HIF-1: Mediator of Physiological and Pathophysiological Responses to Hypoxia. Journal of Applied Physiology (1985), 88, 1474-1480.
https://doi.org/10.1152/jappl.2000.88.4.1474
[8]  Semenza, G.L. (2002) HIF-1 and Tumor Progression: Pathophysiology and Therapeutics. Trends in Molecular Medicine, 8, S62-S67.
https://doi.org/10.1016/S1471-4914(02)02317-1
[9]  Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H. and Kim, K.W. (2004) Hypoxia-Inducible Factor (HIF-1) Alpha: Its Protein Stability and Biological Functions. Experimental & Molecular Medicine, 36, 1-12.
https://doi.org/10.1038/emm.2004.1
[10]  Bruick, R.K. and McKnight, S.L. (2001) A Conserved Family of Prolyl-4-hydroxylases That Modify HIF. Science, 294, 1337-1340.
https://doi.org/10.1126/science.1066373
[11]  Epstein, A.C., Gleadle, J.M., McNeill, L.A., et al. (2001) C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases That Regulate HIF by Prolyl Hydroxylation. Cell, 107, 43-54.
https://doi.org/10.1016/S0092-8674(01)00507-4
[12]  Ivan, M., Kondo, K., Yang, H., et al. (2001) HIFalpha Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science, 292, 464-468.
https://doi.org/10.1126/science.1059817
[13]  Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., et al. (2001) Targeting of HIF-Alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science, 292, 468-472.
https://doi.org/10.1126/science.1059796
[14]  Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. (2001) Independent Function of Two Destruction Domains in Hypoxia-Inducible Factor-Alpha Chains Activated by Prolyl Hydroxylation. The EMBO Journal, 20, 5197-5206.
https://doi.org/10.1093/emboj/20.18.5197
[15]  Huang, L.E., Arany, Z., Livingston, D.M. and Bunn, H.F. (1996) Activation of Hypoxia-Inducible Transcription Factor Depends Primarily upon Redox-Sensitive Stabilization of Its Alpha Subunit. Journal of Biological Chemistry, 271, 32253-32259.
https://doi.org/10.1074/jbc.271.50.32253
[16]  Kallio, P.J., Pongratz, I., Gradin, K., McGuire, J. and Poellinger, L. (1997) Activation of Hypoxia-Inducible Factor 1alpha: Posttranscriptional Regulation and Conformational Change by Recruitment of the Arnt Transcription Factor. Proceedings of the National Academy of Sciences of the United States of America, 94, 5667-5672.
https://doi.org/10.1073/pnas.94.11.5667
[17]  Jewell, U.R., Kvietikova, I., Scheid, A., Bauer, C., Wenger, R.H. and Gassmann, M. (2001) Induction of HIF-1alpha in Response to Hypoxia Is Instantaneous. The FASEB Journal, 15, 1312-1314.
https://doi.org/10.1096/fj.00-0732fje
[18]  Hon, W.C., Wilson, M.I., Harlos, K., Claridge, T.D., Schofield, C.J., Pugh, C.W., et al. (2002) Structural Basis for the Recognition of Hydroxyproline in HIF-1 Alpha by pVHL. Nature, 417, 975-978.
https://doi.org/10.1038/nature00767
[19]  Min, J.H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G. and Pavletich, N.P. (2002) Structure of an HIF-1alpha-pVHL Complex: Hydroxyproline Recognition in Signaling. Science, 296, 1886-1889.
https://doi.org/10.1126/science.1073440
[20]  Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. and Whitelaw, M.L. (2002) Asparagine Hydroxylation of the HIF Transactivation Domain a Hypoxic Switch. Science, 295, 858-861.
https://doi.org/10.1126/science.1068592
[21]  Sang, N., Fang, J., Srinivas, V., Leshchinsky, I. and Caro, J. (2002) Carboxyl-Terminal Transactivation Activity of Hypoxia-Inducible Factor 1 Alpha Is Governed by a von Hippel-Lindau Protein-Independent, Hydroxylation-Regulated Association with p300/CBP. Molecular and Cellular Biology, 22, 2984-2992.
https://doi.org/10.1128/MCB.22.9.2984-2992.2002
[22]  Munkacsy, G., Sztupinszki, Z., Herman, P., Ban, B., Penzvalto, Z., Szarvas, N. and Gyorffy, B. (2016) Validation of RNAi Silencing Efficiency Using Gene Array Data Shows 18.5% Failure Rate across 429 Independent Experiments. Molecular Therapy—Nucleic Acids, 5, e366.
https://doi.org/10.1038/mtna.2016.66
[23]  Bracken, C.P., Whitelaw, M.L. and Peet, D.J. (2003) The Hypoxia-Inducible Factors: Key Transcriptional Regulators of Hypoxic Responses. Cellular and Molecular Life Sciences, 60, 1376-1393.
https://doi.org/10.1007/s00018-003-2370-y
[24]  Wang, G.L. and Semenza, G.L. (1993) General Involvement of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304-4308.
https://doi.org/10.1073/pnas.90.9.4304
[25]  Semenza, G.L. and Wang, G.L. (1992) A Nuclear Factor Induced by Hypoxia via de Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Molecular and Cellular Biology, 12, 5447-5454.
https://doi.org/10.1128/MCB.12.12.5447
[26]  Lowell, B.B. and Shulman, G.I. (2005) Mitochondrial Dysfunction and Type 2 Diabetes. Science, 307, 384-387.
https://doi.org/10.1126/science.1104343
[27]  Ryan, H.E., Lo, J. and Johnson, R.S. (1998) HIF-1 Alpha Is Required for Solid Tumor Formation and Embryonic Vascularization. The EMBO Journal, 17, 3005-3015.
https://doi.org/10.1093/emboj/17.11.3005
[28]  Semenza, G.L., Shimoda, L.A. and Prabhakar, N.R. (2006) Regulation of Gene Expression by HIF-1. Signalling Pathways in Acute Oxygen Sensing: Novartis Foundation Symposium, Volume 272, 2-8.
https://doi.org/10.1002/9780470035009.ch2
[29]  Ruas, J.L. and Poellinger, L. (2005) Hypoxia-Dependent Activation of HIF into a Transcriptional Regulator. Seminars in Cell & Developmental Biology, 16, 514-522.
https://doi.org/10.1016/j.semcdb.2005.04.001
[30]  Schofield, C.J. and Ratcliffe, P.J. (2004) Oxygen Sensing by HIF Hydroxylases. Nature Reviews Molecular Cell Biology, 5, 343-354.
https://doi.org/10.1038/nrm1366
[31]  Triantafyllou, A., Liakos, P., Tsakalof, A., Georgatsou, E., Simos, G. and Bonanou, S. (2006) Cobalt Induces Hypoxia-Inducible Factor-1alpha (HIF-1alpha) in HeLa Cells by an Iron-Independent, but ROS-, PI-3K- and MAPK-Dependent Mechanism. Free Radical Research, 40, 847-856.
https://doi.org/10.1080/10715760600730810
[32]  Bilton, R.L. and Booker, G.W. (2003) The Subtle Side to Hypoxia Inducible Factor (HIFalpha) Regulation. European Journal of Biochemistry, 270, 791-798.
https://doi.org/10.1046/j.1432-1033.2003.03446.x
[33]  Zagorska, A. and Dulak, J. (2004) HIF-1: The Knowns and Unknowns of Hypoxia Sensing. Acta Biochimica Polonica, 51, 563-585.
https://doi.org/10.18388/abp.2004_3545
[34]  Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R.C. and Conaway, J.W. (2000) Activation of HIF1alpha Ubiquitination by a Reconstituted von Hippel-Lindau (VHL) Tumor Suppressor Complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 10430-10435.
https://doi.org/10.1073/pnas.190332597
[35]  Wang, G.L. and Semenza, G.L. (1993) Desferrioxamine Induces Erythropoietin Gene Expression and Hypoxia-Inducible Factor 1 DNA-Binding Activity: Implications for Models of Hypoxia Signal Transduction. Blood, 82, 3610-3615.
https://doi.org/10.1182/blood.V82.12.3610.3610
[36]  Yuan, Y., Hilliard, G., Ferguson, T. and Millhorn, D.E. (2003) Cobalt Inhibits the Interaction between Hypoxia-Inducible Factor-Alpha and von Hippel-Lindau Protein by Direct Binding to Hypoxia-Inducible Factor-Alpha. Journal of Biological Chemistry, 278, 15911-15916.
https://doi.org/10.1074/jbc.M300463200
[37]  Haase, V.H. (2017) HIF-Prolyl Hydroxylases as Therapeutic Targets in Erythropoiesis and Iron Metabolism. Hemodialysis International, 21, S110-S124.
https://doi.org/10.1111/hdi.12567
[38]  Gunton, J.E. (2020) Hypoxia-Inducible Factors and Diabetes. Journal of Clinical Investigation, 130, 5063-5073.
https://doi.org/10.1172/JCI137556
[39]  Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W. and Malanda, B. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281.
https://doi.org/10.1016/j.diabres.2018.02.023
[40]  Gregg, E.W., Sattar, N. and Ali, M.K. (2016) The Changing Face of Diabetes Complications. The Lancet Diabetes & Endocrinology, 4, 537-547.
https://doi.org/10.1016/S2213-8587(16)30010-9
[41]  Roglic, G. and Unwin, N. (2010) Mortality Attributable to Diabetes: Estimates for the Year 2010. Diabetes Research and Clinical Practice, 87, 15-19.
https://doi.org/10.1016/j.diabres.2009.10.006
[42]  Thong, F.S., Dugani, C.B. and Klip, A. (2005) Turning Signals on and off: GLUT4 Traffic in the Insulin-Signaling Highway. Physiology (Bethesda), 20, 271-284.
https://doi.org/10.1152/physiol.00017.2005
[43]  Huang, S. and Czech, M.P. (2007) The GLUT4 Glucose Transporter. Cell Metabolism, 5, 237-252.
https://doi.org/10.1016/j.cmet.2007.03.006
[44]  Klip, A., McGraw, T.E. and James, D.E. (2019) Thirty Sweet Years of GLUT4. Journal of Biological Chemistry, 294, 11369-11381.
https://doi.org/10.1074/jbc.REV119.008351
[45]  Knip, M. and Siljander, H. (2008) Autoimmune Mechanisms in Type 1 Diabetes. Autoimmunity Reviews, 7, 550-557.
https://doi.org/10.1016/j.autrev.2008.04.008
[46]  Bach, J.F. (1994) Insulin-Dependent Diabetes Mellitus as an Autoimmune Disease. Endocrine Reviews, 15, 516-542.
https://doi.org/10.1210/edrv-15-4-516
[47]  Fourlanos, S., Narendran, P., Byrnes, G.B., Colman, P.G. and Harrison, L.C. (2004) Insulin Resistance Is a Risk Factor for Progression to Type 1 Diabetes. Diabetologia, 47, 1661-1667.
https://doi.org/10.1007/s00125-004-1507-3
[48]  Kahn, S.E., Hull, R.L. and Utzschneider, K.M. (2006) Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature, 444, 840-846.
https://doi.org/10.1038/nature05482
[49]  Seidell, J.C. (2000) Obesity, Insulin Resistance and Diabetes—A Worldwide Epidemic. British Journal of Nutrition, 83, S5-S8.
https://doi.org/10.1017/S000711450000088X
[50]  Kasuga, M. (2006) Insulin Resistance and Pancreatic Beta Cell Failure. Journal of Clinical Investigation, 116, 1756-1760.
https://doi.org/10.1172/JCI29189
[51]  Gunton, J.E., Kulkarni, R.N., Yim, S., Okada, T., Hawthorne, W.J., Tseng, Y.H., Roberson, R.S., et al. (2005) Loss of ARNT/HIF1beta Mediates Altered Gene Expression and Pancreatic-Islet Dysfunction in Human Type 2 Diabetes. Cell, 122, 337-349.
https://doi.org/10.1016/j.cell.2005.05.027
[52]  Levisetti, M.G. and Olonsky, K.S. (2005) Diabetic Pancreatic Beta Cells ARNT All They Should Be. Cell Metabolism, 2, 78-80.
https://doi.org/10.1016/j.cmet.2005.07.005
[53]  Cheng, K., Ho, K., Stokes, R., Scott, C., Lau, S.M., Hawthorne, W.J., et al. (2010) Hypoxia-Inducible Factor-1alpha Regulates Beta Cell Function in Mouse and Human Islets. Journal of Clinical Investigation, 120, 2171-2183.
https://doi.org/10.1172/JCI35846
[54]  Stokes, R.A., Cheng, K., Deters, N., Lau, S.M., Hawthorne, W.J., O’Connell, P.J., Stolp, J., et al. (2013) Hypoxia-Inducible Factor-1alpha (HIF-1alpha) Potentiates Beta-Cell Survival after Islet Transplantation of Human and Mouse Islets. Cell Transplantation, 22, 253-266.
https://doi.org/10.3727/096368912X647180
[55]  Cheng, K. andrikopoulos, S. and Gunton, J.E. (2013) First Phase Insulin Secretion and Type 2 Diabetes. Current Molecular Medicine, 13, 126-139.
https://doi.org/10.2174/156652413804486287
[56]  Davies, M.J., Rayman, G., Grenfell, A., Gray, I.P., Day, J.L. and Hales, C.N. (1994) Loss of the First Phase Insulin Response to Intravenous Glucose in Subjects with Persistent Impaired Glucose Tolerance. Diabetic Medicine, 11, 432-436.
https://doi.org/10.1111/j.1464-5491.1994.tb00302.x
[57]  Weir, G.C. and Bonner-Weir, S. (2004) Five Stages of Evolving Beta-Cell Dysfunction during Progression to Diabetes. Diabetes, 53, S16-S21.
https://doi.org/10.2337/diabetes.53.suppl_3.S16
[58]  Colman, P.G., McNair, P., Margetts, H., Schmidli, R.S., Werther, G.A., Alford, F.P., et al. (1998) The Melbourne Pre-Diabetes Study: Prediction of Type 1 Diabetes Mellitus Using Antibody and Metabolic Testing. The Medical Journal of Australia, 169, 81-84.
https://doi.org/10.5694/j.1326-5377.1998.tb140188.x
[59]  Lalwani, A., Warren, J., Liuwantara, D., Hawthorne, W.J., O’Connell, P.J., Gonzalez, F.J., et al. (2019) Beta Cell Hypoxia-Inducible Factor-1alpha Is Required for the Prevention of Type 1 Diabetes. Cell Reports, 27, 2370-2384e6.
https://doi.org/10.1016/j.celrep.2019.04.086
[60]  Hewitson, K.S., Lienard, B.M., McDonough, M.A., Clifton, I.J., Butler, D., Soares, A.S., et al. (2007) Structural and Mechanistic Studies on the Inhibition of the Hypoxia-Inducible Transcription Factor Hydroxylases by Tricarboxylic Acid Cycle Intermediates. Journal of Biological Chemistry, 282, 3293-3301.
https://doi.org/10.1074/jbc.M608337200
[61]  Weidemann, A. and Johnson, R.S. (2008) Biology of HIF-1alpha. Cell Death & Differentiation, 15, 621-627.
https://doi.org/10.1038/cdd.2008.12
[62]  Catrina, S.B., Okamoto, K., Pereira, T., Brismar, K. and Poellinger, L. (2004) Hyperglycemia Regulates Hypoxia-Inducible Factor-1alpha Protein Stability and Function. Diabetes, 53, 3226-3232.
https://doi.org/10.2337/diabetes.53.12.3226
[63]  Bento, C.F. and Pereira, P. (2011) Regulation of Hypoxia-Inducible Factor 1 and the Loss of the Cellular Response to Hypoxia in Diabetes. Diabetologia, 54, 1946-1956.
https://doi.org/10.1007/s00125-011-2191-8
[64]  Dodd, M.S., Sousa Fialho, M.D.L., Montes Aparicio, C.N., Kerr, M., Timm, K.N., Griffin, J.L., et al. (2018) Fatty Acids Prevent Hypoxia-Inducible Factor-1alpha Signaling through Decreased Succinate in Diabetes. JACC: Basic to Translational Science, 3, 485-498.
https://doi.org/10.1016/j.jacbts.2018.04.005
[65]  Pessin, J.E. and Saltiel, A.R. (2000) Signaling Pathways in Insulin Action: Molecular Targets of Insulin Resistance. Journal of Clinical Investigation, 106, 165-169.
https://doi.org/10.1172/JCI10582
[66]  Sell, H., Dietze-Schroeder, D. and Eckel, J. (2006) The Adipocyte-Myocyte Axis in Insulin Resistance. Trends in Endocrinology and Metabolism, 17, 416-422.
https://doi.org/10.1016/j.tem.2006.10.010
[67]  Gorgens, S.W., Benninghoff, T., Eckardt, K., Springer, C., Chadt, A., Melior, A., et al. (2017) Hypoxia in Combination with Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1alpha Pathway. Diabetes, 66, 2800-2807.
https://doi.org/10.2337/db16-1488
[68]  Lindholm, M.E. and Rundqvist, H. (2016) Skeletal Muscle Hypoxia-Inducible Factor-1 and Exercise. Experimental Physiology, 101, 28-32.
https://doi.org/10.1113/EP085318
[69]  Favier, F.B., Britto, F.A., Freyssenet, D.G., Bigard, X.A. and Benoit, H. (2015) HIF-1-Driven Skeletal Muscle Adaptations to Chronic Hypoxia: Molecular Insights into Muscle Physiology. Cellular and Molecular Life Sciences, 72, 4681-4696.
https://doi.org/10.1007/s00018-015-2025-9
[70]  Badin, P.M., Sopariwala, D.H., Lorca, S. and Narkar, V.A. (2016) Muscle Arnt/Hif1beta Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity. PLOS ONE, 11, e0168457.
https://doi.org/10.1371/journal.pone.0168457
[71]  Sakagami, H., Makino, Y., Mizumoto, K., Isoe, T., Takeda, Y., Watanabe, J., et al. (2014) Loss of HIF-1alpha Impairs GLUT4 Translocation and Glucose Uptake by the Skeletal Muscle Cells. The American Journal of Physiology—Endocrinology and Metabolism, 306, E1065-E1076.
https://doi.org/10.1152/ajpendo.00597.2012
[72]  Mason, S.D., Howlett, R.A., Kim, M.J., Olfert, I.M., Hogan, M.C., McNulty, W., et al. (2004) Loss of Skeletal Muscle HIF-1alpha Results in Altered Exercise Endurance. PLOS Biology, 2, e288.
https://doi.org/10.1371/journal.pbio.0020288
[73]  Sinha, K.M., Tseng, C., Guo, P., Lu, A., Pan, H., Gao, X. andrews, R., Eltzschig, H. and Huard, J. (2019) Hypoxia-Inducible Factor 1alpha (HIF-1alpha) Is a Major Determinant in the Enhanced Function of Muscle-Derived Progenitors from MRL/MpJ Mice. The FASEB Journal, 33, 8321-8334.
https://doi.org/10.1096/fj.201801794R
[74]  Billin, A.N., Honeycutt, S.E., McDougal, A.V., Kerr, J.P., Chen, Z., Freudenberg, J.M., et al. (2018) HIF Prolyl Hydroxylase Inhibition Protects Skeletal Muscle from Eccentric Contraction-Induced Injury. Skeletal Muscle, 8, 35.
https://doi.org/10.1186/s13395-018-0179-5
[75]  Sinha, I., Sakthivel, D., Olenchock, B.A., Kruse, C.R., Williams, J., Varon, D.E., Smith, J.D., et al. (2017) Prolyl Hydroxylase Domain-2 Inhibition Improves Skeletal Muscle Regeneration in a Male Murine Model of Obesity. Frontiers in Endocrinology (Lausanne), 8, Article No. 153.
https://doi.org/10.3389/fendo.2017.00153
[76]  Doring, F., Onur, S., Fischer, A., Boulay, M.R., Perusse, L., Rankinen, T., Rauramaa, R., Wolfarth, B. and Bouchard, C. (2010) A Common Haplotype and the Pro582Ser Polymorphism of the Hypoxia-Inducible Factor-1alpha (HIF1A) Gene in Elite Endurance Athletes. Journal of Applied Physiology (1985), 108, 1497-1500.
https://doi.org/10.1152/japplphysiol.01165.2009
[77]  Sim, J., Cowburn, A.S., Palazon, A., Madhu, B., Tyrakis, P.A., Macias, D., Bargiela, D.M., et al. (2018) The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metabolism, 27, 898-913e7.
https://doi.org/10.1016/j.cmet.2018.02.020
[78]  Sun, K., Tordjman, J., Clement, K. and Scherer, P.E. (2013) Fibrosis and Adipose Tissue Dysfunction. Cell Metabolism, 18, 470-477.
https://doi.org/10.1016/j.cmet.2013.06.016
[79]  Guglielmi, V., Cardellini, M., Cinti, F., Corgosinho, F., Cardolini, I., D’Adamo, M., Zingaretti, M.C., et al. (2015) Omental Adipose Tissue Fibrosis and Insulin Resistance in Severe Obesity. Nutrition & Diabetes, 5, e175.
https://doi.org/10.1038/nutd.2015.22
[80]  Halberg, N., Khan, T., Trujillo, M.E., Wernstedt-Asterholm, I., Attie, A.D., Sherwani, S., Wang, Z.V., et al. (2009) Hypoxia-Inducible Factor 1alpha Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Molecular and Cellular Biology, 29, 4467-4483.
https://doi.org/10.1128/MCB.00192-09
[81]  Sun, K., Halberg, N., Khan, M., Magalang, U.J. and Scherer, P.E. (2013) Selective Inhibition of Hypoxia-Inducible Factor 1alpha Ameliorates Adipose Tissue Dysfunction. Molecular and Cellular Biology, 33, 904-917.
https://doi.org/10.1128/MCB.00951-12
[82]  Zhang, X., Lam, K.S.L., Ye, H., Chung, S.K., Zhou, M., Wang, Y. and Xu, A. (2010) Adipose Tissue-Specific Inhibition of Hypoxia-Inducible Factor 1{alpha} Induces Obesity and Glucose Intolerance by Impeding Energy Expenditure in Mice. Journal of Biological Chemistry, 285, 32869-32877.
https://doi.org/10.1074/jbc.M110.135509
[83]  Jiang, C., Qu, A., Matsubara, T., Chanturiya, T., Jou, W., Gavrilova, O., Shah, Y.M. and Gonzalez, F.J. (2011) Disruption of Hypoxia-Inducible Factor 1 in Adipocytes Improves Insulin Sensitivity and Decreases Adiposity in High-Fat Diet-Fed Mice. Diabetes, 60, 2484-2495.
https://doi.org/10.2337/db11-0174
[84]  Zhang, J., Wang, Y., Gao, Z., Yun, Z. and Ye, J. (2012) Hypoxia-Inducible Factor 1 Activation from Adipose Protein 2-cre Mediated Knockout of von Hippel-Lindau Gene Leads to Embryonic Lethality. Clinical and Experimental Pharmacology and Physiology, 39, 145-150.
https://doi.org/10.1111/j.1440-1681.2011.05656.x
[85]  Lee, Y.S., Kim, J.W., Osborne, O., Oh, D.Y., Sasik, R., Schenk, S., Chen, A., et al. (2014) Increased Adipocyte O2 Consumption Triggers HIF-1alpha, Causing Inflammation and Insulin Resistance in Obesity. Cell, 157, 1339-1352.
https://doi.org/10.1016/j.cell.2014.05.012
[86]  Duscher, D., Neofytou, E., Wong, V.W., Maan, Z.N., Rennert, R.C., Inayathullah, M., et al. (2015) Transdermal Deferoxamine Prevents Pressure-Induced Diabetic Ulcers. Proceedings of the National Academy of Sciences of the United States of America, 112, 94-99.
https://doi.org/10.1073/pnas.1413445112
[87]  Zhu, Y., Wang, Y., Jia, Y., Xu, J. and Chai, Y. (2019) Roxadustat Promotes Angiogenesis through HIF-1alpha/VEGF/VEGFR2 Signaling and Accelerates Cutaneous Wound Healing in Diabetic Rats. Wound Repair and Regeneration, 27, 324-334.
https://doi.org/10.1111/wrr.12708
[88]  Persson, P. and Palm, F. (2017) Hypoxia-Inducible Factor Activation in Diabetic Kidney Disease. Current Opinion in Nephrology and Hypertension, 26, 345-350.
https://doi.org/10.1097/MNH.0000000000000341
[89]  Sugahara, M., Tanaka, S., Tanaka, T., Saito, H., Ishimoto, Y., Wakashima, T., Ueda, M., et al. (2020) Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. Journal of the American Society of Nephrology, 31, 560-577.
https://doi.org/10.1681/ASN.2019060582
[90]  Rahtu-Korpela, L., Maatta, J., Dimova, E.Y., Horkko, S., Gylling, H., Walkinshaw, G., Hakkola, J., et al. (2016) Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects against Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 608-617.
https://doi.org/10.1161/ATVBAHA.115.307136
[91]  Hyvarinen, J., Hassinen, I.E., Sormunen, R., Maki, J.M., Kivirikko, K.I., Koivunen, P. and Myllyharju, J. (2010) Hearts of Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Hypomorphic Mice Show Protection against Acute Ischemia-Reperfusion Injury. Journal of Biological Chemistry, 285, 13646-13657.
https://doi.org/10.1074/jbc.M109.084855
[92]  Rojas, D.R., Tegeder, I., Kuner, R. and Agarwal, N. (2018) Hypoxia-Inducible Factor 1alpha Protects Peripheral Sensory Neurons from Diabetic Peripheral Neuropathy by Suppressing Accumulation of Reactive Oxygen Species. Journal of Molecular Medicine (Berlin), 96, 1395-1405.
https://doi.org/10.1007/s00109-018-1707-9
[93]  Zeinivand, M., Nahavandi, A. and Zare, M. (2020) Deferoxamine Regulates Neuroinflammation and Oxidative Stress in Rats with Diabetes-Induced Cognitive Dysfunction. Inflammopharmacology, 28, 575-583.
https://doi.org/10.1007/s10787-019-00665-7
[94]  Rahtu-Korpela, L., Karsikas, S., Horkko, S., Blanco Sequeiros, R., Lammentausta, E., Makela, K.A., Herzig, K.H., et al. (2014) HIF Prolyl 4-Hydroxylase-2 Inhibition Improves Glucose and Lipid Metabolism and Protects against Obesity and Metabolic Dysfunction. Diabetes, 63, 3324-3333.
https://doi.org/10.2337/db14-0472
[95]  Michailidou, Z., Morton, N.M., Moreno Navarrete, J.M., West, C.C., Stewart, K.J., Fernandez-Real, J.M., Schofield, C.J., Seckl, J.R. and Ratcliffe, P.J. (2015) Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes, 64, 733-745.
https://doi.org/10.2337/db14-0233
[96]  Dhillon, S. (2019) Roxadustat: First Global Approval. Drugs, 79, 563-572.
https://doi.org/10.1007/s40265-019-01077-1
[97]  Smith, K.A., Waypa, G.B. and Schumacker, P.T. (2017) Redox Signaling during Hypoxia in Mammalian Cells. Redox Biology, 13, 228-234.
https://doi.org/10.1016/j.redox.2017.05.020
[98]  Fuhrmann, D.C. and Brune, B. (2017) Mitochondrial Composition and Function under the Control of Hypoxia. Redox Biology, 12, 208-215.
https://doi.org/10.1016/j.redox.2017.02.012
[99]  Schofield, C.J. and Ratcliffe, P.J. (2005) Signalling Hypoxia by HIF Hydroxylases. Biochemical and Biophysical Research Communications, 338, 617-626.
https://doi.org/10.1016/j.bbrc.2005.08.111
[100]  Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408.
https://doi.org/10.1016/j.cell.2012.01.021
[101]  Brand, M.D., Affourtit, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L. and Parker, N. (2004) Mitochondrial Superoxide: Production, Biological Effects, and Activation of Uncoupling Proteins. Free Radical Biology and Medicine, 37, 755-767.
https://doi.org/10.1016/j.freeradbiomed.2004.05.034
[102]  Semenza, G.L. (2011) Hypoxia-Inducible Factor 1: Regulator of Mitochondrial Metabolism and Mediator of Ischemic Preconditioning. Biochimica et Biophysica Acta, 1813, 1263-1268.
https://doi.org/10.1016/j.bbamcr.2010.08.006
[103]  Chan, S.Y., Zhang, Y.Y., Hemann, C., Mahoney, C.E., Zweier, J.L. and Loscalzo, J. (2009) MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metabolism, 10, 273-284.
https://doi.org/10.1016/j.cmet.2009.08.015
[104]  Semenza, G.L. (2010) HIF-1: Upstream and Downstream of Cancer Metabolism. Current Opinion in Genetics and Development, 20, 51-56.
https://doi.org/10.1016/j.gde.2009.10.009
[105]  Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H., Wesley, J.B., Gonzalez, F.J. and Semenza, G.L. (2008) Mitochondrial Autophagy Is an HIF-1-Dependent Adaptive Metabolic Response to Hypoxia. Journal of Biological Chemistry, 283, 10892-10903.
https://doi.org/10.1074/jbc.M800102200
[106]  Briston, T., Yang, J. and Ashcroft, M. (2011) HIF-1alpha Localization with Mitochondria: A New Role for an Old Favorite? Cell Cycle, 10, 4170-4171.
https://doi.org/10.4161/cc.10.23.18565
[107]  Li, J., Qian, X., Hu, J. and Sha, B. (2009) Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading. Journal of Biological Chemistry, 284, 23852-23859.
https://doi.org/10.1074/jbc.M109.023986
[108]  Li, H.S., Zhou, Y.N., Li, L., Li, S.F., Long, D., Chen, X.L., Zhang, J.B., Feng, L. and Li, Y.P. (2019) HIF-1alpha Protects against Oxidative Stress by Directly Targeting Mitochondria. Redox Biology, 25, Article ID: 101109.
https://doi.org/10.1016/j.redox.2019.101109
[109]  Ye, J. (2009) Emerging Role of Adipose Tissue Hypoxia in Obesity and Insulin Resistance. International Journal of Obesity (London), 33, 54-66.
https://doi.org/10.1038/ijo.2008.229
[110]  Trayhurn, P., Wang, B. and Wood, I.S. (2008) Hypoxia in Adipose Tissue: A Basis for the Dysregulation of Tissue Function in Obesity? British Journal of Nutrition, 100, 227-235.
https://doi.org/10.1017/S0007114508971282
[111]  Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., et al. (2007) Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation. Diabetes, 56, 901-911.
https://doi.org/10.2337/db06-0911
[112]  Rausch, M.E., Weisberg, S., Vardhana, P. and Tortoriello, D.V. (2008) Obesity in C57BL/6J Mice Is Characterized by Adipose Tissue Hypoxia and Cytotoxic T-Cell Infiltration. International Journal of Obesity (London), 32, 451-463.
https://doi.org/10.1038/sj.ijo.0803744
[113]  Ye, J., Gao, Z., Yin, J. and He, Q. (2007) Hypoxia Is a Potential Risk Factor for Chronic Inflammation and Adiponectin Reduction in Adipose Tissue of ob/ob and Dietary Obese Mice. The American Journal of Physiology—Endocrinology and Metabolism, 293, E1118-E1128.
https://doi.org/10.1152/ajpendo.00435.2007
[114]  Semenza, G.L. (2000) HIF-1 and Human Disease: One Highly Involved Factor. Genes & Development, 14, 1983-1991.
https://doi.org/10.1101/gad.14.16.1983
[115]  Arany, Z., Huang, L.E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M.A., Bunn, H.F. and Livingston, D.M. (1996) An Essential Role for p300/CBP in the Cellular Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 93, 12969-12973.
https://doi.org/10.1073/pnas.93.23.12969
[116]  Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., Poellinger, L. and Fujii-Kuriyama, Y. (1999) Molecular Mechanisms of Transcription Activation by HLF and HIF1alpha in Response to Hypoxia: Their Stabilization and Redox Signal-Induced Interaction with CBP/p300. The EMBO Journal, 18, 1905-1914.
https://doi.org/10.1093/emboj/18.7.1905
[117]  Fath, D.M., Kong, X., Liang, D., Lin, Z., Chou, A., Jiang, Y., Fang, J., Caro, J. and Sang, N. (2006) Histone Deacetylase Inhibitors Repress the Transactivation Potential of Hypoxia-Inducible Factors Independently of Direct Acetylation of HIF-Alpha. Journal of Biological Chemistry, 281, 13612-13619.
https://doi.org/10.1074/jbc.M600456200
[118]  Kato, H., Tamamizu-Kato, S. and Shibasaki, F. (2004) Histone Deacetylase 7 Associates with Hypoxia-Inducible Factor 1alpha and Increases Transcriptional Activity. Journal of Biological Chemistry, 279, 41966-41974.
https://doi.org/10.1074/jbc.M406320200
[119]  Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E. and Park, J.W. (2010) Sirtuin 1 Modulates Cellular Responses to Hypoxia by Deacetylating Hypoxia-Inducible Factor 1alpha. Molecular Cell, 38, 864-878.
https://doi.org/10.1016/j.molcel.2010.05.023
[120]  Qian, D.Z., Kachhap, S.K., Collis, S.J., Verheul, H.M., Carducci, M.A., Atadja, P. and Pili, R. (2006) Class II Histone Deacetylases Are Associated with VHL-Independent Regulation of Hypoxia-Inducible Factor 1 Alpha. Cancer Research, 66, 8814-8821.
https://doi.org/10.1158/0008-5472.CAN-05-4598
[121]  Cao, Y. (2010) Adipose Tissue Angiogenesis as a Therapeutic Target for Obesity and Metabolic Diseases. Nature Reviews Drug Discovery, 9, 107-115.
https://doi.org/10.1038/nrd3055
[122]  Christiaens, V. and Lijnen, H.R. (2010) Angiogenesis and Development of Adipose Tissue. Molecular and Cellular Endocrinology, 318, 2-9.
https://doi.org/10.1016/j.mce.2009.08.006
[123]  Crandall, D.L., Hausman, G.J. and Kral, J.G. (1997) A Review of the Microcirculation of Adipose Tissue: Anatomic, Metabolic, and Angiogenic Perspectives. Microcirculation, 4, 211-232.
https://doi.org/10.3109/10739689709146786
[124]  Brakenhielm, E., Cao, R., Gao, B., Angelin, B., Cannon, B., Parini, P. and Cao, Y. (2004) Angiogenesis Inhibitor, TNP-470, Prevents Diet-Induced and Genetic Obesity in Mice. Circulation Research, 94, 1579-1588.
https://doi.org/10.1161/01.RES.0000132745.76882.70
[125]  Kim, D.H., Woods, S.C. and Seeley, R.J. (2010) Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium Reduces Food Intake and Body Weight. Diabetes, 59, 907-915.
https://doi.org/10.2337/db09-1141
[126]  Fukumura, D., Ushiyama, A., Duda, D.G., Xu, L., Tam, J., Krishna, V., Chatterjee, K., Garkavtsev, I., Jain, R.K. (2003) Paracrine Regulation of Angiogenesis and Adipocyte Differentiation during in Vivo Adipogenesis. Circulation Research, 93, e88-e97.
https://doi.org/10.1161/01.RES.0000099243.20096.FA
[127]  Claffey, K.P., Wilkison, W.O. and Spiegelman, B.M. (1992) Vascular Endothelial Growth Factor. Regulation by Cell Differentiation and Activated Second Messenger Pathways. Journal of Biological Chemistry, 267, 16317-16322.
https://doi.org/10.1016/S0021-9258(18)42003-0
[128]  Miyazawa-Hoshimoto, S., Takahashi, K., Bujo, H., Hashimoto, N., Yagui, K. and Saito, Y. (2005) Roles of Degree of Fat Deposition and Its Localization on VEGF Expression in Adipocytes. The American Journal of Physiology—Endocrinology and Metabolism, 288, E1128-E1136.
https://doi.org/10.1152/ajpendo.00003.2004
[129]  Zhang, Q.X., Magovern, C.J., Mack, C.A., Budenbender, K.T., Ko, W. and Rosengart, T.K. (1997) Vascular Endothelial Growth Factor Is the Major Angiogenic Factor in Omentum: Mechanism of the Omentum-Mediated Angiogenesis. Journal of Surgical Research, 67, 147-154.
https://doi.org/10.1006/jsre.1996.4983
[130]  Raval, R.R., Lau, K.W., Tran, M.G., Sowter, H.M., Mandriota, S.J., Li, J.L., et al. (2005) Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma. Molecular and Cellular Biology, 25, 5675-5686.
https://doi.org/10.1128/MCB.25.13.5675-5686.2005
[131]  Ellinghaus, P., Heisler, I., Unterschemmann, K., Haerter, M., Beck, H., Greschat, S., Ehrmann, A., et al. (2013) BAY 87-2243, a Highly Potent and Selective Inhibitor of Hypoxia-Induced Gene Activation Has Antitumor Activities by Inhibition of Mitochondrial Complex I. Cancer Medicine, 2, 611-624.
https://doi.org/10.1002/cam4.112
[132]  Koh, M.Y., Spivak-Kroizman, T., Venturini, S., Welsh, S., Williams, R.R., Kirkpatrick, D.L. and Powis, G. (2008) Molecular Mechanisms for the Activity of PX-478, an Antitumor Inhibitor of the Hypoxia-Inducible Factor-1alpha. Molecular Cancer Therapeutics, 7, 90-100.
https://doi.org/10.1158/1535-7163.MCT-07-0463
[133]  Yin, S., Kaluz, S., Devi, N.S., Jabbar, A.A., de Noronha, R.G., Mun, J., et al. (2012) Arylsulfonamide KCN1 Inhibits in vivo Glioma Growth and Interferes with HIF Signaling by Disrupting HIF-1alpha Interaction with Cofactors p300/CBP. Clinical Cancer Research, 18, 6623-6633.
https://doi.org/10.1158/1078-0432.CCR-12-0861

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133