In the global context of diversification of usable energy sources, the use of renewable energies, in particular solar photovoltaic energy, is becoming increasingly important. As such, the development of a new generation of photovoltaic cells based on the CIGS material is promising. Indeed, the efficiency of these cells has exceeded 20% in recent years. Thus, our work consists in the modeling of a tandem solar cell based on Cu(In,Ga)Se2 (CGS/CIGS). The goal is to optimize its physical and geometrical parameters in order to obtain a better photovoltaic conversion efficiency compared to other research works on tandem in the past. We used AMPS-1D software for the simulation. When we realize the tandem, the least efficient cell (CGS) imposes the current and the shape of the J-V characteristic of the tandem. We obtained a theoretical efficiency of 39.30% which is significantly higher than the efficiencies obtained in the past by other researchers with a short circuit current of 34.60 mA/cm2, an open circuit voltage of 1.74 V and a form factor of 65.20%. The simulation also showed that the high defect density in the material strongly impacts the performance of the tandem.
References
[1]
Masson, G., Latour, M., Rekinger, M., Theologitis, I.T. and Papoutsi, M. (2013) Global Market Outlook for Photovoltaics. Technical Report, EPIA, 5.
[2]
Stéphane, P. (2009) Nouvelles structures distribuées de gestion et de conversion de l’énergie pour les applications photovoltaïques. Thèse de Doctorat de l’Université de Toulouse III-Paul Sabatier, Toulouse, 9.
[3]
Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, 510. https://doi.org/10.1063/1.1736034
[4]
Soro, D., Sylla, A., ArmelIgnace, N., et al. (2022) Simulation of a CIGS Solar Cell with CIGSe2/MoSe2/Mo Rear Contact Using AFORS-HET Digital Simulation Software. Modeling and Numerical Simulation of Material Science, 12, 13-23. https://doi.org/10.4236/mnsms.2022.122002
[5]
Green, M.A., Emery, K., Hishikawa, Y. and Warta, W. (2013) Solar Cell Efficiency Tables (Version 41). Progress in Photovoltaics: Research and Applications, 21, 1-11. https://doi.org/10.1002/pip.2352
[6]
Saji, S., Choi, I.-H. and Lee, C.-W. (2011) Progress in Electrodeposited Absorber Layer for CuIn1-xGaxSe2 (CIGS) Solar Cells. Solar Energy, 85, 2666-2678. https://doi.org/10.1016/j.solener.2011.08.003
[7]
Huang, C.H. (2008) Effects of Ga Content on Cu(In,Ga)Se Solar Cells Studied by Numerical Modeling. Journal of Physics and Chemistry of Solids, 69, 330. https://doi.org/10.1016/j.jpcs.2007.07.093
[8]
Fang, Z., Zeng, Q., Zuo, C., et al. (2020) Perovskite-Based Tandem Solar Cells. Science Bulletin, 66, 621-636. https://doi.org/10.1016/j.scib.2020.11.006
[9]
Hedayati, M., Olyaee, S. and Ghorashi, S.M.B. (2019) The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell. Journal of Electronic Materials, 49, 1454-1461. https://doi.org/10.1007/s11664-019-07824-0
[10]
Gharibzadeh, S., Hossain, I.M., Fassl, P., et al. (2020) 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS. Advanced Functional Materials, 30, Article ID: 1909919. https://doi.org/10.1002/adfm.201909919
[11]
Fonash, S.V., et al. (1997) A Manual for AMPS-ID for Windows 95/NT. Pennsylvania State University, University Park.
[12]
Soler, R. (2019) L’énergie solaire Des fondamentaux aux technologies d’aujourd’hui et de demain. Lavoisier, Paris.
[13]
Fonash, S.J. (2015) A Manual for One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures (AMPS-1D). The Center for Nanotechnology Education and Utilization, The Pennsylvania State University, University Park, 16802.
[14]
De Vos, A. (1980) Detailed Balance Limit of the Efficiency of Tandem Solar Cells. Journal of Physics D: Applied Physics, 13, 839. https://doi.org/10.1088/0022-3727/13/5/018
[15]
Elbar, M. and Tobbeche, S. (2015) Numerical Simulation of CGS/CIGS Single and Tandem Thin-Film Solar Cells Using the Silvaco-Atlas Software. Energy Procedia, 74, 1220-1227. https://doi.org/10.1016/j.egypro.2015.07.766
[16]
Oladapo, O.S. (2017) Simulation et Optimisation des Paramètres de la Structure photovoltaïque àbase CIGS. Thèse, Université Nangui Abrogoua, Abidjan, 134.
[17]
Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A. and Dabou, R. (2015) Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software. Energy Procedia, 74, 736-744. https://doi.org/10.1016/j.egypro.2015.07.809
[18]
Ben Ali, M. and Rahmouni, S. (2018) Simulation et Optimisation d’une Cellule Solaire à base de Cu(In,Ga)Se2. Mémoires de Master, Université Ahmed Draïa Adrarp, Adrar, 53.
[19]
Hedayati, M. and Olyaee, S. (2022) High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell. Crystals, 12, 703. https://doi.org/10.3390/cryst12050703