全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimal Sizing of Capacitor Bank for Increasing Substation Capacity of Mamou

DOI: 10.4236/wjet.2023.112015, PP. 217-233

Keywords: Compensation, Power, Reactive, Optimal, Battery, Capacitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtained during this study are: a reduction in subscribed power from 14913.978 kVA to 14010.100 kVA, a reduction in the transformer load rate from 99.4% to 93.4%, a reduction in reactive power called from 5481.729 kVAr to 481.729 kVAr, an increase in the active power transported by the substation from 8505.062 kW to 8962.323 kW, a reduction in the voltage drop from 4.8% to 3.9%, an increase in the power available at the secondary of the transformer station at full load from 13950 kW to 14700 kW and an annual electrical energy saving of 339943.48 kWh of electrical energy, therefore fuel savings and a reduction in CO2 and SO2 emissions due to this energy saving will be achieved. The installation of capacitor banks for optimization of reactive energy allowed a reduction in the current called therefore a reduction in the absorbed power: 14153.061 kVA, i.e. a reduction of 903.876 kVA. It is therefore essential that energy players are convinced of the need to install capacitors to reduce or even eliminate their reactive energy bill. This is necessarily accompanied by an investment by Electricité De Guinée by setting up active and reactive energy meters but also by implementing pricing in line with the reduction in the transfer of reactive energy in the network.

References

[1]  Mohsin, Q.K., Lin, X.N., Firas, F.M., Flaih, S.M. and Dawoud, M.K. (2016) Optimal Placement and Capacity of Capacitor Bank in Radial Distribution System. 2016 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, 7-8 April 2016, 416-423.
https://doi.org/10.1109/ICEETS.2016.7583791
[2]  Soma, G.G. (2021) Optimal Sizing and Placement of Capacitor Banks in Distribution Networks Using a Genetic Algorithm. Electricity, 2, 187-204.
https://doi.org/10.3390/electricity2020012
[3]  Goryunov, V., Girshin, S., Kuznetsov, E., et al., (2017) Optimal Sizing of Capacitor Banks to Reduce Power Losses with Accounting of Temperature Dependence of Bare Overhead Conductors. Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems-SMARTGREENS, Porto, 22-24 April 2017, 174-179.
https://doi.org/10.5220/0006301101740179
[4]  Téllez, A.A., Lopez, G., Isaac, I. and Gonzalez, J.W. (2018) Optimal Reactive Power Compensation in Electrical Distribution Systems with Distributed Resources. Review. Heliyon, 4, e00746.
https://doi.org/10.1016/j.heliyon.2018.e00746
[5]  Montoya, O.D., Edwin, R.T. and Giral-Ramírez, D.A. (2022) Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach. Computers, 11, Article 105.
https://doi.org/10.3390/computers11070105
[6]  Gil-González, W., Montoya, O.D., Rajagopalan, A., Grisales-Norena L.F. and Hernández, J.C. (2020) Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies, 13, Article 4914.
https://doi.org/10.3390/en13184914
[7]  Aguila, A., Ortiz, L., Orizondo, R. and Lopez, G. (2021) Optimal Location and Dimensioning of Capacitors in Microgrids Using a Multicriteria Decision Algorithm. Heliyon, 7, e08061.
[8]  Girshin, S.S., Bigun, A.A.Y., Mel’nikov, N.А. Petrova, E.V., Trotsenko, V.M., Osipov, D.S. and Goryunov, V.N. (2021) Loss of Energy in Electrical Networks with Capacitor Banks under Optimal Reactive Power Control. Przeglad Elektrotechniczny, 97, Article 133247.
https://doi.org/10.15199/48.2021.09.23
[9]  Dalabeeh, A.K., Al-Ziod, A., Hindi, A., Al-Adwan, I., Khawaldah, M.A. and AL-Mofleh, A. (2016) Optimal Sizing and Location of the Capacitor Banks in a Radial Industrial Distribution System. Energy and Power, 6, 16-20.
[10]  Recensement Général de la Population et de l’Habitat-Guinée (2018) Institut National des Statistiques-Guinée.
https://population.insguinee.org
[11]  Abla, D., Gado, A. and El-Zeftawy, A.A. (2010) Impact of Reactive Power Control on Energy Savings of Electric Residential, Loads in Egypt. Proceedings of the 14th International Middle East Power Systems Conference, Giza, 19-21 December 2010, Article ID: 160.
[12]  Statistiques annuelles de pointe de charge des artères de l’Electricité De Guinée.
https://edg.com.gn/
[13]  Ismail, B., Wahab, N.I.A., Othman, M.L., Radzi, M.A.M., Vijyakumar, K.N. and Naain, M.N.M. (2020) A Comprehensive Review on Optimal Location and Sizing of Reactive Power Compensation Using Hybrid-Based Approaches for Power Loss Reduction, Voltage Stability Improvement, Voltage Profile Enhancement and Loadability Enhancement. IEEE Access, 8, 222733-222765.
https://doi.org/10.1109/ACCESS.2020.3043297
[14]  Bel, B.A. (2020) Optimisation de la compensation de l’énergie réactive, mémoire de Master à visée de recherche, 125.
[15]  Abdesselam, A. Modélisation et simulation des réseaux électriques.
https://sites.google.com/site/lmdelectrotechnique
[16]  Li, Q.B. and Yin, H.S. (2019) Research on Reactive Power Compensation Capacity Allocation Scheme of 110 kV Substation. 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering, Shenyang, 22-24 November 2019, 241-244.
https://doi.org/10.1109/AUTEEE48671.2019.9033289
[17]  Circutor (2013) Solutions pour la compensation d’énergie réactive en Moyenne Tension.
[18]  Technology, A. (2016) Compensation d’énergie réactive et maitrise de la qualité des infrastructures électriques. 80.
[19]  Prah, I. and Attachie, J. (2022) Effect of Switching Devices on Power Quality and Transient Voltage Suppression Using Capacitor Bank Model. Journal of Power and Energy Engineering, 10, 77-89.
https://doi.org/10.4236/jpee.2022.105006
[20]  Korunovic, L.M., Aleksandar, S. and Djokic, J.S.Z. (2019) Field-Based Evaluation of the Effects of Shunt Capacitors on the Operation of Distribution Transformers. IEEE Transactions on Power Delivery, 34, 680-689.
https://doi.org/10.1109/TPWRD.2019.2893588
[21]  Zhang, J.F., Zhang, C.W. and Ma, D.Q. (2018) Substation Reactive Power Regulation Strategy. IOP Conference Series: Materials Science and Engineering, 301, Article 012117.
https://doi.org/10.1088/1757-899X/301/1/012117
[22]  Akram, H. (2022) Control de tension et la puissance reactive dans RE en présence du système de compensation dynamique shunt. Mémoire de Master académique, 82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133