This study uses the Life Cycle Analysis (LCA) to evaluate the magnitude
of the environmental impact, in terms of global warming potential, and water
footprint throughout the 20 years of useful life of a rural electrical energy
concession comprised of 120Wp Households photovoltaic systems (HPS) in the
isolated communities of San Martin, in the Peruvian Amazon region. On the other
hand, due to the particular conditions of the system (installation, operation,
maintenance, monthly tariff collection), it is necessary to know its real
impact and sustainability; not only through the aforementioned environmental
impact indicators, but also by energy intensity values required by the system
throughout its life cycle. Therefore, this paper used the Cumulative energy
demand (CED) method to determine the amount of energy taken from natural
resources for each process involved in the LCA and calculated with this, i.e., the Energy Payback Time (EPBT) of
the whole system. Likewise, the HPS has been environmentally compared to other
case studies and the Peruvian Energy Mix, revealing a lower impact in the
latter case and results within the range for stand-alone systems. Besides, the
HPS shows a strong relation between energy production and O&M condition.
Additionally, this study allows a further promotion of the use of this type of
system in isolated areas, as well as the diversification of electricity
generation in Peru.
References
[1]
DGER Dirección General de Electrificación Rural (2020) Plan Nacional de Electrificación Rural, periodo 2021-2023. MEM Ministerio de Energía y Minas, Lima.
[2]
Ahmad Ludin, N. (2019) Economic and Life Cycle Analysis of Photovoltaic System in APEC Region, towards Low-Carbon Society. APEC Secretariat, Singapore, 66-69.
[3]
Muteri, V., Cellura, M., Curto, D., et al. (2020) Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies, 13, 5-8. https://doi.org/10.3390/en13010252
[4]
Talebian, A., Ghandehariun, S., Hosseinalipour, S. and Dadpoor, A. (2020) Life Cycle Assessment of Polycrystalline Solar Panel Production in Iran. Journal of Solar Energy Research, 5, 11.
[5]
Sullivan, J. and Gaines, L. (2010) A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs. https://doi.org/10.2172/1000659
Berger, M., Van der Ent, R., Eisner, S., Bach, V. and Finkbeiner, M. (2014) Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science and Technology, 48, 4521-4528. https://doi.org/10.1021/es404994t
[8]
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., et al. (2014) Energy Systems. Climate Change 2014: Mitigation of Climate Change. Working Group III to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge.
[9]
Garcia-Valverde, R., Miguel, C., Martinez-Béjar, R. and Urbina, A. (2009) Life Cycle Assessment Study of a 4.2 kWp Stand-Alone Photovoltaic System. Solar Energy, 83, 1434-1445. https://doi.org/10.1016/j.solener.2009.03.012
[10]
Ito, M. (2011) Life Cycle Assessment of PV Systems. https://www.intechopen.com/chapters/17733
[11]
Alsema, E. (2000) Energy Payback Time and CO2 Emissions of PV Systems. Progress in Photovoltaics. Progress in Photovoltaics Research and Applications, 8, 17-25. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<17::AID-PIP295>3.0.CO;2-C
[12]
Osinergmin, Organismo Supervisor de la Inversión en Energía y Minería (2022) Aprueban Tarifa Eléctrica Rural para Sistemas Fotovoltaicos, expresada en Cargos Fijos Equivalentes por Energía Promedio. El Peruano, 16-19.
[13]
International Organization for Standarization (2006) Environmental Management: Life Cycle Assessment; Principles and Framework. https://www.iso.org/obp/ui#iso:std:iso:14040:ed-2:v1:en
[14]
Li, T., et al. (2014) A System Boundary Identification Method for Life Cycle Assessment. The International Journal of Life Cycle Assessment, 19, 646-660. https://doi.org/10.1007/s11367-013-0654-5
[15]
Castillo Calderón, V. (2019) Análisis de Ciclo de Vida de Sistemas Solares Fotovoltaicos Policristalinos Centralizados en instalaciones de generación distribuida para Autoconsumo. Costa Rica.
[16]
Palanov, N. (2014) Life-Cycle Assessment of Photovoltaic Systems—Analysis of Environmental Impact from the Production of PV System Including Solar Panels Produced by Gaia Solar.
[17]
Arzoumanidis, I., D’Eusanio, M., Raggi, A. and Petti, L. (2020) Functional Unit Definition Criteria in Life Cycle Assessment and Social Life Cycle Assessment: A Discussion. In: Traverso, M., Petti, L. and Zamagni, A., Eds., Perspectives on Social LCA, Perspectives on Social LCA, Springer, Berlin, 1-10. https://doi.org/10.1007/978-3-030-01508-4_1
[18]
ISO International Standardization Organization (2006) ISO 14040:2006(es). https://www.iso.org/obp/ui#iso:std:iso:14040:ed-2:v1:es
[19]
Frischknecht, R., Stolz, P., Krebs, L., de Wild-Scholten, M. and Sinha, P. (2020) Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems, International Energy Agency (IEA) PVPS Task 12, 32, 35, 38, 68.
[20]
Google Maps. https://www.google.com/maps
[21]
DP World (2022) Searates. https://www.searates.com/es/services/distances-time
[22]
Brusseau, M. (2019) Chapter 32. Sustainable Development and Other Solutions to Pollution and Global Change. In: Brusseau, M., Pepper, I. and Gerba, C., Eds., Environmental and Pollution Science, 3rd Edition, Academic Press, Cambridge, 585-603. https://doi.org/10.1016/B978-0-12-814719-1.00032-X
[23]
Panameño, R., Gutiérrez, C., Angel, B.E., Fábio-César, S. and Kiperstok, A. (2019) Cleaner Production and LCA as Complementary Tools in Environmental Assessment: Discussing Tradeoffs Assessment in a Case of Study within the Wood Sector in Brazil. Sustainability, 11, 5026. https://doi.org/10.3390/su11185026
[24]
Joint Research Center (2013) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment Methods. European Union, Luxembourg, 3.
[25]
Mekonnen, M. and Hoekstra, A. (2011) National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption. UNESCO-IHE Institute for Water Education, Delft. https://doi.org/10.5194/hessd-8-763-2011
[26]
Tama, A. (2021) Application of Life-Cycle Assessment for the Study of Carbon and Water Footprints of the 16.5 MWe Wind Farm in Villonaco, Loja, Ecuador. Smart Grid and Renewable Energy, 12, 203-230. https://doi.org/10.4236/sgre.2021.1212012
[27]
Joint Research Center JRC. Photovoltaic Geographical Information System. https://re.jrc.ec.europa.eu/pvg_tools/es/#MR
[28]
DGEE, Dirección General de Eficiencia Energética (2021) Balance Nacional de Energía 2019. Lima.
[29]
MINEM. La huella de carbono y la eficiencia energética. Lima.
[30]
Lunardi, M., Moore, S., Alvarez-Gaitan, J., Chang, N. and Corkish, R. (2018) Life Cycle Assessment on Advanced Silicon Solar Modules. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, 10-15 June 2018, 2452-2457. https://doi.org/10.1109/PVSC.2018.8547848
[31]
Kaldellis, J., Zafirakis, D. and Kondili, E. (2010) Energy Pay-Back Period Analysis of Stand-Alone Photovoltaic Systems. Renewable Energy, 35, 1448-1453. https://doi.org/10.1016/j.renene.2009.12.016
[32]
Rapa, M., Gobbi, L. and Ruggieri, R. (2020) Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies, 13, 6292. https://doi.org/10.3390/en13236292
[33]
Althaus, H.-J., Bauer, C., Doka, G., et al. (2010) Implementation of Life Cycle Impact Assessment Methods. EcoInvent Center, St. Gallen.
[34]
Sun, Q., Wu, G., Tian, L., et al. (2019) The Status Quo and Issue of the Guangdong Electricity Market. IOP Conference Series: Materials Science and Engineering, 612, Article ID: 042074. https://doi.org/10.1088/1757-899X/612/4/042074
[35]
Rahman, M., Salehin, S., Ahmed, S. and Sadrul Islam, A. (2017) Chapter Two. Environmental Impact Assessment of Different Renewable Energy Resources: A Recent Development. In: Rasul, M.G., Azad, A.K. and Sharma, S.C., Eds., Clean Energy for Sustainable Development, Academic Press, Cambridge, 29-71. https://doi.org/10.1016/B978-0-12-805423-9.00002-8
[36]
Schipani, V. (2018) Wind Energy’s Carbon Footprint. Factcheck, 14 marzo.
[37]
Fthenakis, V. and Alsema, E. (2006) Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004-Early 2005 Status. Progress in Photovoltaics: Research and Applications, 14, 275-280. https://doi.org/10.1002/pip.706
[38]
Celik, A., Muneer, T. and Clarke, P. (2008) Optimal Sizing and Life Cycle Assessment of Residential Photovoltaic Energy Systems with Battery Storage. Progress in Photovoltaics: Research and Applications, 16, 69-85. https://doi.org/10.1002/pip.774
[39]
Kato, K., Murata, A. and Sakuta, K. (1998) Energy Pay-Back Time and Life-Cycle CO2 Emission of Residential PV Power System with Silicon PV Module. Progress in Photovoltaics: Research and Applications, 6, 105-115. https://doi.org/10.1002/(SICI)1099-159X(199803/04)6:2<105::AID-PIP212>3.0.CO;2-C
[40]
Md Mustafizur, R., Chowdhury Sadid, A. and Tm Abir, A. (2019) A Life Cycle Assessment Model for Quantification of Environmental Footprints of a 3.6 kWp Photovoltaic System in Bangladesh. International Journal of Renewable Energy Development, 8, 113-118. https://doi.org/10.14710/ijred.8.2.113-118
[41]
Kannan, R., Leong, K., Osman, R., Ho, H. and Tso, C. (2006) Life Cycle Assessment Study of Solar PV Systems: An Example of a 2.7 kWp Distributed Solar PV System in Singapore. Solar Energy, 80, 555-563. https://doi.org/10.1016/j.solener.2005.04.008
[42]
Alsema, E. (2000) Environmental Life Cycle Assessment of Solar Home Systems. Report NWS-E-2000-15, Utrecht Univ., Utrecht.
[43]
Fukurozaki, S., Zilles, R. and Sauer, I. (2013) Energy Payback Time and CO2 Emissions of 1.2 kWp Photovoltaic Roof-Top System in Brazil. International Journal of Smart Gird and Clean Energy, 2, 168. https://doi.org/10.12720/sgce.2.2.164-169
[44]
Castro, A., Davila, C., Laura, W., et al. (2021) Climas Del Perú-Mapa de Clasificación Climática Nacional. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima, 94.
[45]
Won-Cheol, N., Younghwan, K., Kyung Nam, K. and Kwan-Young, L. (2014) Analysis on the Water Footprint of Crystalline Silicon PV System. Clean Technology, 20, 449-456. https://doi.org/10.7464/ksct.2014.20.4.449
[46]
Hadian, S. and Madani, K. (2013) The Water Demand of Energy: Implications for Sustainable Energy Policy Development. Sustainability, 5, 4674-4687. https://doi.org/10.3390/su5114674
[47]
Mekonnen, M.M., Gerbens-Leenes, P.W. and Hoekstra, A.Y. (2015) The Consumptive Water Footprint of Electricity and Heat: A Global Assessment. Environmental Science Water Research & Technology, 1, 285-297. https://doi.org/10.1039/C5EW00026B
[48]
Stolz, P., Frischknecht, R., Heath, G., et al. (2017) Water Footprint of European Rooftop Photovoltaic Electricity Based on Regionalised Life Cycle Inventories. International Energy Agency Power Systems Programme, 10. https://doi.org/10.2172/1561520
[49]
Goel, S., Sharma, R. and Jena, B. (2021) Life Cycle Cost and Energy Assessment of a 3.4 kWp Rooftop Solar Photovoltaic System in India. International Journal of Ambient Energy, 43, 4528-4533. https://doi.org/10.1080/01430750.2021.1913221
[50]
Lamba, R., Gaur, A. and Tiwari, G.N. (2014) Life Cycle Cost Assessment and Enviroeconomic Analysis of Thin Film. Journal of Fundamentals of Renewable Energy and Applications, 4, 3-5.