全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Multiplicative Weight of Covariance Matrix on Hybrid Data Assimilation Schemes

DOI: 10.4236/acs.2023.132015, PP. 255-281

Keywords: SisPI, WRFDA, Hybrid-Methods, Covariance Weights

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnVAR. These weights are distributed between the static and time-invariant matrix and the matrix generated from the perturbations of a previous ensemble. The assigned values are 25%, 50%, and 75%, always having as a reference the ensemble matrix. The experiments are applied to the short-range Prediction System (SisPI) that works operationally at the Institute of Meteorology. The impact of Tropical Storm Eta on November 7 and 8, 2020 was selected as a study case. The results suggest that by giving the main weight to the ensemble matrix more realistic solutions are achieved because it shows a better representation of the synoptic flow. On the other hand, it is observed that 3DEnVAR method is more sensitive to multiplicative weight change of the first guess. More realistic results are obtained with 50% and 75% relations with 4DEnVAR method, whereas with 3DEnVAR a weight of 75% for the ensemble matrix is required.

References

[1]  Kalnay, E. (2003) Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511802270
[2]  Laing, A. and Evans, J. (2010) Introduction to Tropical Meteorology: A Comprehensive Online and Print Textbook. Version 2a. COMET Program, University Corporation for Atmospheric Research.
https://www.meted.ucar.edu/tropical/textbook_2nd_edition_es/
[3]  González, P.M., Sierra, M. and Ferrer, A.L. (2022) Data Assimilation System Applied to Short-Range Forecast System. Environmental Sciences Proceedings, 19, Article 20.
https://doi.org/10.3390/ecas2022-12806
[4]  Ferrer Hernández, A.L., González Jardines, P.M., Sierra Lorenzo, M. and de la Caridad Aguiar Figueroa, D. (2022) Impact of the Assimilation of Non-Precipitating Echoes Reflectivity Data on the Short-Term Numerical Forecast of SisPI. Environmental Sciences Proceedings, 19, Article 13.
https://doi.org/10.3390/ecas2022-12845
[5]  Barker, D., Huang, W., Guo, Y. and Xiao, Q. (2004) A Three-Dimensional (3DVAR) Data Assimilation System for MM5: Implementation and Initial Results. Monthly Weather Review, 132, 897-914.
https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
[6]  Sierra, M., Ferrer, H., Valdés, R., Mayor, G., Cruz, R., Borrajero, I., Rodríguez, C., Rodríguez, N. and Roque, A. (2015) Sistema Automático de Predicción a Mesoescala de Cuatro Ciclos Diarios, Instituto de Meteorología, La Habana.
[7]  Armas, E. (2015) Asimilación de Observaciones de Satélites Meteorológicos En El Modelo WRF. Trabajo Diploma, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana.
[8]  Fernández, D. (2019) Corrección de Errores Sistemáticos En La Inicialización Del Modelo WRF Utilizando Asimilación de Datos de Radar. Trabajo Diploma, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana.
[9]  Ferrer, A. and Borrajero, I. (2019) Estudio Preliminar Para La Implementación De La Asimilación De Datos De Radares Y Satélites Meteorológicos En Pronósticos Numéricos A Muy Alta Resolución Sobre La Región Occidental De Cuba. Informe de Resultado Científico Presentado en el Consejo Científico del Instituto de Meteorología de Cuba. Instituto de Geografía Tropica, La Habana.
[10]  Schwartz, C.S., Liu, Z., Huang, X.-Y., Kuo, Y.-H. and Fong, C.-T. (2013) Comparing Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation. Monthly Weather Review, 141, 4350-4372.
https://doi.org/10.1175/MWR-D-13-00028.1
[11]  Malakar, P., Kesarkar, A.P., Bhate, J. and Deshamukhya, A. (2020) Appraisal of Data Assimilation Techniques for Dynamical Downscaling of the Structure and Intensity of Tropical Cyclones. Earth and Space Science, 7, e2019EA000945.
https://doi.org/10.1029/2019EA000945
[12]  Zhu, S., Wang, B., Zhang, L., Liu, J., Liu, Y., Gong, J., Xu, S., Wang, Y., Huang, W. and Liu, L. (2022) A 4DEnVar-Based Ensemble Four-Dimensional Variational (En4DVar) Hybrid Data Assimilation System for Global NWP: System Description and Primary Tests. Journal of Advances in Modeling Earth Systems, 14, e2022MS003023.
https://doi.org/10.1029/2022MS003023
[13]  Lee, J.C.K., Amezcua, J. and Bannister, R.N. (2022) Hybrid Ensemble-Variational Data Assimilation in ABC-DA within a Tropical Framework. Geoscientific Model Development, 15, 6197-6219.
https://doi.org/10.5194/gmd-2022-3
[14]  Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A., Morfá-ávalos, Y., Morejón-Loyola, Y. and Hinojosa-Fernández, M. (2017) Estudios de Sensibilidad Del SisPI a Cambios de La PBL. La Cantidad de Niveles Verticales y, Las Parametrizaciones de Microfísica y Cúmulos, a Muy Alta Resolución.
https://www.researchgate.net/publication/325050959_Estudios_de_sensibilidad_del_SisPI_a_cambios_de_la_PBL_la_cantidad_de_niveles_verticales_y_las_parametrizaciones_de_microfisica_y_cumulos_a_muy_alta_resolucion
[15]  Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J. and Chen, Y. (2012) The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bulletin of the American Meteorological Society, 93, 831-843.
https://doi.org/10.1175/BAMS-D-11-00167.1
[16]  Parrish, D.F. and Derber, J.C. (1992) The National Meteorological Center’s Spectral Statistical-Interpolation Analysis System. Monthly Weather Review, 120, 1747-1763.
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
[17]  Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note-475+STR, UCAR.
[18]  Lu, X., Wang, X., Li, Y., Tong, M. and Ma, X. (2017) GSI-Based Ensemble-Variational Hybrid Data Assimilation for HWRF for Hurricane Initialization and Prediction: Impact of Various Error Covariances for Airborne Radar Observation Assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 223-239.
https://doi.org/10.1002/qj.2914
[19]  Tong, M., Sippel, J.A., Tallapragada, V., Liu, E., Kieu, C., Kwon, I.-H. Wang, W., Liu, Q., Ling, Y. and Zhang, B. (2018) Impact of Assimilating Aircraft Reconnaisse Observations on Tropical Cyclone Initialization and Prediction Using Operational HWRF and GSI Ensemble-Variational Hybrid Data Assimilation. Monthly Weather Review, 146, 4155-4173.
https://doi.org/10.1175/MWR-D-17-0380.1
[20]  Statterfield, E., Hodyss, D., Kuhl, D. and Bishop, C. (2018) Observation-Informed Generalized Hybrid Error Covariance Models. Monthly Weather Review, 146, 30605-3622.
https://doi.org/10.1175/MWR-D-18-0016.1
[21]  Wang, X., Barker, D.M., Snyder, C. and Hamill, T.M. (2008) A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments. Monthly Weather Review, 136, 5132-5147.
https://doi.org/10.1175/2008MWR2445.1
[22]  Wang, X., Snyder, C. and Hamill, T.M. (2007) On the Theoretical Equivalence of Differently Proposed Ensemble-3DVAR Hybrid Analysis Schemes. Monthly Weather Review, 135, 222-227.
https://doi.org/10.1175/MWR3282.1
[23]  Jolliffe, I.T. and Stephenson, D.B., Eds. (2003) Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, Hoboken.
[24]  Pasch, R.J., Reinhart, B.J., Berg, R. and Roberts, D.P. (2021) Hurricane ETA. National Hurrican Center Tropical Cyclone Report No. AL292020, NOAA, 70.
https://www.nhc.noaa.gov/data/tcr/AL292020_Eta.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133