|
基于多尺度特征增强的遥感图像目标检测方法
|
Abstract:
针对遥感图像目标检测中存在的背景复杂、目标像素数少以及目标尺度变化大等问题,本文提出一种基于多尺度特征增强的遥感图像目标检测方法。首先,使用具有高分辨率输出的HRNet网络替换ResNet作为主干网络,强化对遥感目标位置信息的提取;其次,在HRNet中引入注意力机制,抑制复杂背景噪声的干扰;最后,设计多尺度特征增强金字塔网络,进一步增强网络的多尺度特征信息表达。实验结果表明,相较于原始Cascade R-CNN目标检测方法,所提方法的目标检测均值平均精度提高了5.32%;在与经典目标检测方法的对比实验中,所提方法也表现出较好的检测性能。
To address the problems of complex image background, small number of object pixels and large variation of object scale in remote sensing image object detection, we propose a remote sensing image object detection method based on multi-scale feature enhancement. First, the HRNet network with high-resolution output is used to replace ResNet to strengthen the backbone network to obtain the location of remote sensing objects; second, the attention mechanism is introduced into HRNet to suppress the interference of complex background noise; finally, the multi-scale feature-enhanced pyramid network is designed to further enhance the multi-scale information representation of the pyramid network. The results of the experiment show that compared with the Cascade R-CNN object detection method, the mean accuracy of the proposed method is improved by 5.32%, and the proposed method also shows better detection performance in comparison with the classical object detection method.
[1] | 聂光涛, 黄华. 光学遥感图像目标检测方法综述[J]. 自动化学报, 2021, 47(8): 1749-1768. |
[2] | Wang, B., Zhou, Y., Zhang, H. and Wang, N. (2019) An Aircraft Target Detection Method Based on Regional Convolutional Neural Network for Remote Sensing Images. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12-14 July 2019, 474-478.
https://doi.org/10.1109/ICEIEC.2019.8784637 |
[3] | Ding, P., Zhang, Y., Deng, W.-J. Jia, P. and Kuijper, A. (2018) A Light and Faster Regional Convolutional Neural Network for Object Detection in Optical Remote Sensing Images. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 208-218. https://doi.org/10.1016/j.isprsjprs.2018.05.005 |
[4] | 姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11): 346-353. |
[5] | 刘楠, 毛昭勇, 王亦晨, 沈钧戈. 基于参数量和感受野可调的遥感目标检测方法[J]. 光子学报, 2021, 50(11): 302-313. |
[6] | Ke, S., Yang, Z., Borui, J., et al. (2019) High-Resolution Representations for Labeling Pixels and Regions.
https://arxiv.org/abs/1904.04514 |
[7] | Woo, S., Park, J., Lee, J.-Y. and Kweon, I.S. (2018) CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., eds., Computer Vision—ECCV 2018, Springer, Cham, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1 |
[8] | Lin, T.-Y., Dollár, P., Girshick, R., et al. (2017) Feature Pyramid Networks for Object Detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017, 2117-2125.
https://doi.org/10.1109/CVPR.2017.106 |
[9] | Liu, S., Qi, L., Qin, H.F., Shi, J.P. and Jia, J.Y. (2018) Path Aggregation Network for Instance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18-23 June 2018, 8759-8768. https://doi.org/10.1109/CVPR.2018.00913 |
[10] | Pang, J.M., Chen, K., Shi, J.P., Feng, H.J. and Ouya, W.L. (2019) Libra R-CNN: Towards Balanced Learning for Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. https://doi.org/10.1109/CVPR.2019.00091 |
[11] | Tan, M.X., Pang, R.M. and Le, Q.V. (2020) EfficientDet: Scalable and Efficient Object Detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13-19 June 2020, 10781-10790. https://doi.org/10.1109/CVPR42600.2020.01079 |
[12] | Li, K., Wan, G., Cheng, G., et al. (2020) Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307.
https://doi.org/10.1016/j.isprsjprs.2019.11.023 |
[13] | Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. https://arxiv.org/abs/1506.01497 |
[14] | Lin, T.-Y., Goyal, P., Girshick, R., et al. (2020) Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327. https://doi.org/10.1109/TPAMI.2018.2858826 |