|
纳米石墨粉掺入对红黏土微观结构的影响
|
Abstract:
纳米石墨粉是一种具有良好应用潜力的土体外掺剂,可以运用于红黏土的性质改良中。本研究对采自桂林两地红黏土的矿物成分进行分析,并对原状样品与纳米石墨粉改性后样品进行微观成像观察,探究了纳米石墨粉对红黏土微观结构的影响。结果显示:雁山、杨堤两地红黏土主要矿物成分为高岭石、石英、埃洛石和三水铝石,两地红黏土均有较强的淋滤、风化程度,其中雁山红黏土的淋滤、风化程度均强于杨堤红黏土。纳米石墨粉的掺入有效地改善了红黏土的微观结构,缩小了其孔隙尺寸,增强了其土体结构的整体胶结性,使其向均匀的密实结构变化。雁山、杨堤两地原始未压缩样品在1%~2%掺量比时可呈现出最为致密的土黏结构,而压缩样品的土黏结构均于2%掺量比时达到最为致密的状态。
Nano-graphite powder is a kind of in vitro soil admixture with good application potential, which can be used in the property improvement of red clay. In this study, the mineral composition of the red clay in Guilin, and the micro-morphology of the original samples and the modified samples were observed, so as to explore the influence of the nano-graphite powder on the microstructure of the red clay. The results show that the main mineral components of Yanshan and Yangdi red clay are kaolinite, quartz, halloite and bauxite. The red clay of Yanshan and Yangdi have strong leaching and weathering degrees, among which the leaching and weathering degrees of Yanshan red clay are stronger than those of Yangdi red clay. The addition of nano-graphite powder effectively improved the microstructure of the red clay, reduced the pore size, enhanced the overall cementation of the soil structure, and made it change to a uniform compact structure. The original uncompressed samples from Yanshan and Yangdi showed the densest soil structure at 1%~2%, while the soil structure of the compressed samples reached the densest state at 2%.
[1] | Xiao, M., Wang, J. and Chen, X. (2005) Material Composition and Engineering Characteristics of Red Clay in Guigang, Guangxi. Journal of Earth Science, 16, 84-88. |
[2] | 曾召田, 赵艳林, 吕海波, 等. 广西岩溶地区红黏土的工程地质特征及成因分析[C]//2015年全国工程地质学术年会. 北京: 科学出版社, 2015: 7. |
[3] | 方谦, 洪汉烈, 赵璐璐, 等. 风化成土过程中自生矿物的气候指示意义[J]. 地球科学, 2018, 43(3): 753-769. |
[4] | Xiang, W., Cui, D., Liu, Q., et al. (2010) Theory and Practice of Ionic Soil Stabilizer Reinforcing Special Clay. Journal of Earth Science, 21, 882-887. https://doi.org/10.1007/s12583-010-0141-x |
[5] | 李龙起, 罗书学, 姜红, 等. 非饱和红黏土土水特性及强度特征研究[J]. 西南交通大学学报, 2014, 49(3): 393-398+431. |
[6] | 谈云志, 吴军, 黄龙波, 等. 冻融作用下水泥改良软黏土的性能演化过程[J]. 建筑材料学报, 2017, 20(2): 209-214. |
[7] | 刘之葵, 郭彤, 王剑. 粉煤灰和二灰对桂林红黏土力学性质的影响[J]. 水文地质工程地质, 2017, 44(3): 86-92. |
[8] | Suits, L.D., Sheahan, T.C., Al-Rawas, A.A., et al. (2002) A Comparative Evaluation of Various Additives Used in the Stabilization of Expansive Soils. Geotechnical Testing Journal, 25, 199. https://doi.org/10.1520/GTJ11363J |
[9] | 董浩强, 王永康, 朱紫阳, 等. 石灰粉煤灰改良信阳红黏土试验研究[J]. 砖瓦, 2023(2): 73-76. |
[10] | 洪昌寿, 辛佳怡, 李邵, 等. 低掺量木质素磺酸钙改良红黏土氡气阻滞效果[J]. 有色金属(冶炼部分), 2022(10): 109-114. |
[11] | 刘芠君, 肖桂元, 张祥宇, 等. 稻壳灰固化红黏土的路用性能及微观机理[J]. 河北工程大学学报(自然科学版), 2022, 39(3): 16-22. |
[12] | 罗国夫, 陈开圣, 骆弟普. 磷石膏稳定红黏土的压缩特性及微观机理[J]. 硅酸盐通报, 2023, 42(2): 644-656.
https://doi.org/10.16552/j.cnki.issn1001-1625.20230207.004 |
[13] | 白汉营, 高宇豪, 陈学军, 等. 纳米石墨粉红黏土改良机理试验研究[J]. 水文地质工程地质, 2018, 45(3): 86-92. |
[14] | Gu, Y., Wan, Q., Li, X., et al. (2022) Structure and Evolution of Clay-Organic Nanocomposites in Three Leading Shales in China. Journal of Earth Science. https://kns.cnki.net/kcms/detail/42.1788.P.20220805.1629.014.html |
[15] | 陈学军, 李家成, 宋宇, 等. 纳米石墨粉对红黏土力学性质的影响[J]. 工程地质学报, 2018, 26(1): 97-102. |
[16] | 李佳明, 唐世斌, 宋怀博, 等. 纳米石墨粉改性膨胀土的工程特性及微观结构[J]. 中南大学学报(英文版), 2022, 29(2): 499-514. |
[17] | 李佳明, 陈学军, 杨越, 等. 纳米石墨粉改良红黏土试验[J]. 河南科技大学学报(自然科学版), 2019, 40(5): 69-73+80+88. |
[18] | 侯越峰, 干路平, 黄海栋, 等. 含片状纳米石墨粒子润滑油的制备及其摩擦学行为[J]. 华东理工大学学报: 自然科学版, 2005, 31(6): 743-746. |
[19] | 官文超, 刘益锋, 黄明星. 纳米石墨/聚丙烯酸乙酯复合乳液的合成及其润滑性能研究[J]. 润滑与密封, 2005(3): 9-10, 19. |
[20] | 张雨昕, 白汉营, 高宇豪, 等. 纳米石墨粉红黏土强度影响因素敏感性试验研究[C]//2018年全国工程地质学术年会. 北京: 科学出版社, 2018: 8. |
[21] | 刘曦, 张养德, 乔亮, 等. 高比表面积纳米石墨粉的微波吸收性能研究[J]. 功能材料, 2020, 51(5): 5070-5075. |
[22] | 李华, 孙伟, 刘加平. XRD-Rietveld法用于水泥基材料物相的定量分析[J]. 混凝土, 2013(1): 1-5. |
[23] | 任帮政. 峨眉山玄武岩斜坡残积土中粘土矿物的形成机制研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2014. |