|
Applied Physics 2023
高斯光束照射下不同粒径的倾斜椭球形液滴光学焦散结构的研究
|
Abstract:
基于矢量光线追踪(VRT)模型,推导了高斯光束在液滴内部的传播过程,研究了高斯光束照射下不同粒径大小的倾斜椭球形液滴在一阶彩虹区域内所产生的光学焦散结构(即彩虹条纹和双曲脐条纹),计算了不同椭球度的液滴彩虹条纹的曲率以及彩虹角的位置,建立了光学焦散特性(主要指彩虹条纹的曲率和彩虹角的位置)与液滴信息的物理关联,为后续的实验测量提供理论支持。
Based on the vector ray tracing (VRT) model, the propagation process of Gaussian beam in the droplet was deduced. The optical caustic structure (i.e. rainbow fringe and hyperbolic umbilic fringe) generated by titled ellipsoidal droplet with different sizes in the first-order rainbow region under the irradiation of Gaussian beam was studied. The curvature of rainbow fringe and the position of rainbow angle of droplet with different ellipsoid were calculated. The physical correlation between the optical caustic properties (mainly referring to the curvature of the rainbow fringe and the posi-tion of the rainbow angle) and the droplet information is established, which provides theoretical support for the subsequent experimental measurement.
[1] | Roth, N., Anders, K. and Frohn, A. (1990) Simultaneous Measurement of Temperature and Size of Droplets in the Micrometer Range. Journal of Laser Applications, 2, 37-42. https://doi.org/10.2351/1.4745251 |
[2] | Roth, N., Anders, K. and Frohn, A. (1996) Size Insensitive Rainbow Refractometry: Theoretical. |
[3] | Van Beeck, J. and Riethmuller, M.L. (1995) Nonintrusive Measurements of Temperature and Size of Single Falling Raindrops. Applied Optics, 34, 1633-1639. https://doi.org/10.1364/AO.34.001633 |
[4] | van Beeck, J., Giannoulis, D. and Zimmer, L. (1999) Global Rainbow Thermometry for Droplet-Temperature Measurement. Optics Letters, 24, 1696-1698. https://doi.org/10.1364/OL.24.001696 |
[5] | van Beeck, J., Zimmer, L. and Riethmuller, M.L. (2001) Global Rainbow Thermometry for Mean Temperature and Size Measurement of Spray Droplets. Particle & Particle Systems Characterization, 18, 196-204.
https://doi.org/10.1002/1521-4117(200112)18:4<196::AID-PPSC196>3.0.CO;2-H |
[6] | Vetrano, M.R. and Riethmuller, M.L. (2005) Assessment of Refractive Index Gradients by Standard Rainbow Thermometry. Applied Optics, 44, 7275-7281. https://doi.org/10.1364/AO.44.007275 |
[7] | Vetrano, M.R., Gauthier, S. and Beeck, J.V. (2006) Characterization of a Non-Isothermal Water Spray by Global Rainbow Thermometry. Experiments in Fluids, 40, 15-22. https://doi.org/10.1007/s00348-005-0042-4 |
[8] | Song, F.H., Xu, C.L. and Wang, X.S. (2013) Rainbow Technique for Multi-Parameter Measurement of Absorbing Cylinder. Particuology, 11, 184-188. https://doi.org/10.1016/j.partic.2012.07.004 |
[9] | Saengkaew, S., Bodoc, V. and Lavergne, G. (2013) Appli-cation of Global Rainbow Technique in Sprays with a Dependence of the Refractive Index on Droplet Size. Optics Communications, 286, 295-303.
https://doi.org/10.1016/j.optcom.2012.09.024 |
[10] | Zhou, J., Fang, Y. and Wang, J. (2019) Rainbow Pattern Analysis of a Multilayered Sphere for Optical Diagnostic of a Heating Droplet. Optics Communications, 441, 113-120. https://doi.org/10.1016/j.optcom.2019.02.061 |
[11] | Wu, Y.C., Promvongsa, J. and Wu, X.C. (2015) One-Dimensional Rainbow Technique Using Fourier Domain Filtering. Optics Express, 23, 30545-30556. https://doi.org/10.1364/OE.23.030545 |
[12] | Green, A.W. (1975) An Approximation for the Shapes of Large Raindrops. Journal of Applied Meteorology, 14, 1578-1583. https://doi.org/10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2 |
[13] | Guck, J., Ananthakrishnan, R. and Moon, T.J. (2000) Optical Deformability of Soft Biological Dielectrics. Physical Review Letters, 84, 5451-5454. https://doi.org/10.1103/PhysRevLett.84.5451 |
[14] | Marston, P.L. and Trinh, E.H. (1984) Hyperbolic Umbilic Diffraction Catastrophe and Rainbow Scattering from Spheroidal Drops. Nature, 312, 529-531. https://doi.org/10.1038/312529a0 |
[15] | Nye, F. (1984) Rainbow Scattering from Spheroidal Drops—An Ex-planation of the Hyperbolic Umbilic Foci. Nature, 312, 531-532. https://doi.org/10.1038/312531a0 |
[16] | Marston, P.L. (1985) Cusp Diffraction Catastrophe from Spheroids: Generalized Rainbows and Inverse Scattering. Optics Letters, 10, 588-590. https://doi.org/10.1364/OL.10.000588 |
[17] | Simpson, H.J. and Marston, P.L. (1991) Scattering of White Light from Levitated Oblate Water Drops near Rainbows and Other Diffraction Catastrophes. Applied Optics, 30, 3468-3473. https://doi.org/10.1364/AO.30.003468 |
[18] | Kaduchak, G., Marston, P.L. and Simpson, H.J. (1994) E6 Diffraction Catastrophe of the Primary Rainbow of Oblate Water Drops: Observations with White-Light and Laser Illumination. Applied Optics, 33, 4691.
https://doi.org/10.1364/AO.33.004691 |
[19] | Kaduchak, G. and Marston, P.L. (1994) Hyperbolic Umbilic and E6 Diffraction Catastrophes Associated with the Secondary Rainbow of Oblate Water Drops: Observations with Laser Illumination. Applied Optics, 33, 4697-4701.
https://doi.org/10.1364/AO.33.004697 |
[20] | Lock, J.A. and Xu, F. (2010) Optical Caustic Observed in Light Scattered by an Oblate Spheroid. Applied Optics, 49, 1288. https://doi.org/10.1364/AO.49.001288 |
[21] | Yu, H.T., Xu, F. and Tropea, C. (2013) Optical Caustic Associated with the Primary Rainbow of Oblate Droplets: Sim-ulation and Application in Non-Sphericity Measurement. Optics Express, 21, 25761-25771.
https://doi.org/10.1364/OE.21.025761 |
[22] | Yu, H.T., Xu, F. and Tropea, C. (2013) Simulation of Optical Caustic Associated with the Secondary Rainbow of Oblate Droplets. Optics Letters, 38, 4469-4472. https://doi.org/10.1364/OL.38.004469 |
[23] | Yu, H.T., Shen, J.Q., Tropea, C. and Xu, F. (2019) Model for Computing Optical Caustic Partitions for the Primary Rainbow from Tilted Spheriodal Drops. Optics Letters, 44, 823-826. https://doi.org/10.1364/OL.44.000823 |
[24] | Siegman, A.E. (1986) Lasers. University Science Books, Sausalito. |