全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

顾北煤矿中央采区水文地质条件综合分析与评价
Comprehensive Analysis and Evaluation of Hydrogeological Conditions in the Central Mining Area of Gubei Coal Mine

DOI: 10.12677/ME.2023.112036, PP. 294-306

Keywords: 水文地质条件,放水试验,断层导隔水性,顾北煤矿
Hydrogeological Condition
, Discharge Test, Conductivity and Water-Resistance of Fault, Gubei Coal Mine

Full-Text   Cite this paper   Add to My Lib

Abstract:

以顾北煤矿中央采区为例,在系统分析矿井水文地质条件的基础上,采用井下灰岩含水层放水试验方法,通过对水量和各含水层观测孔水位动态分析,确定了南、北、中三个采区之间的水力联系,结果表明:三个采区属于相对独立的水文地质单元,中央采区各含水层之间在垂向上水力联系弱,采区C3Ⅰ组灰岩含水层富水性为弱,其中采区边界Fs833为不导水断层,露头区范围灰岩裂隙发育,具有一定的导水性,地下水从露头区沿灰岩倾斜方向向深部流动,其富水性逐渐减弱,研究结果为矿井灰岩水害防治提供重要的参考意义。
Taking the central mining area of Gubei coal mine as a case study, and based on a systematic anal-ysis of the mine’s hydrogeological conditions, researchers employed an underground limestone aquifer drainage test method. By examining the water volume and dynamic changes in water levels in observation holes across each aquifer, they determined the hydraulic connections between the southern, northern, and central mining areas. Results indicated that these three mining areas constitute relatively independent hydrogeological units. The hydraulic connections between aq-uifers in the central mining area are weak in the vertical direction. The C3Ⅰ group limestone aquifer in this area exhibits weak water-richness. The Fs833 boundary of the mining area is a non-conductive fault. Limestone fractures in the outcrop area are well-developed and exhibit some degree of conductivity. Groundwater flows from the outcrop area along the inclined direction of limestone towards deeper depths, with its water-richness gradually decreasing. These research findings provide valuable insights for preventing and controlling limestone water damage in mines.

References

[1]  谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.
[2]  高明忠, 王明耀, 谢晶, 等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报, 2020, 45(8): 2691-2703.
[3]  吴俊达, 解建, 孙亚楠, 闫奋前. 承压水上工作面采动诱发断层活化及煤柱留设研究[J]. 煤炭工程, 2020, 52(5): 133-137.
[4]  王威, 郑士田, 李文江, 等. 黄河北煤田顶底板双灰岩水害分析及防治技术[J]. 煤矿安全, 2020, 51(4): 93-96.
[5]  尹尚先, 连会青, 刘德民, 尹慧超. 华北型煤田岩溶陷落柱研究70年: 成因?机理?防治[J]. 煤炭科学技术, 2019, 47(11): 1-29.
[6]  毛则飞. 安微省某矿区水文地质条件分析[J]. 西部资源, 2022, 111(6): 22-24.
[7]  黄浩. 顶板探放水工作在工作面水文地质条件分析中的应用[J]. 煤炭技术, 2022, 41(11): 133-137.
[8]  吴洁河. 基于数值模拟的水文地质分析[J]. 水利科技与经济, 2022, 28(10): 97-101.
[9]  王晓琴, 刘永芳. 煤层浅埋区防水防沙水文地质条件分析研究[J]. 煤炭技术, 2022, 41(11): 152-154.
[10]  王博文. 煤矿水文地质条件和矿井充水因素分析——以霍西煤田孝义市山西金晖万峰矿为例[J]. 华北自然资源, 2022, 108(3): 151-153.
[11]  郝爱兵, 赵伟, 郑跃军, 等. 水文地质调查技术方法发展与应用综述[J]. 测绘科学, 2022, 47(8): 25-35.
[12]  虎维岳. 华北东部深部岩溶及煤矿岩溶水害特征[J]. 煤田地质与勘探, 2010, 38(2): 23-27.
[13]  甘林堂. 淮南矿区A组煤底板灰岩水防治及潘二矿突水事故原因分析[J]. 煤矿安全, 2018, 49(7): 171-174+180.
[14]  刘闯, 李化敏, 鲁智豪, 常发展. 下伏煤层开采导水断层防水煤柱留设宽度研究[J]. 煤炭技术, 2022, 41(12): 5-9.
[15]  苏悦, 许光泉, 魏健, 等. 顾北煤矿煤系砂岩裂隙水水文地球化学特征及其成因分析[J]. 矿业安全与环保, 2020, 47(2): 16-24.
[16]  郑竹艳, 许光泉, 杨婷婷, 等. 淮南顾北矿F104断层两侧岩溶水化学形成机制及导隔水性评价[J]. 煤田地质与勘探, 2020, 48(1): 129-137.
[17]  蔡有京, 窦春远, 魏健, 顾北煤矿A组煤首采区灰岩水害探查治理技术探讨[J]. 中国煤炭, 2022, 48(1): 39-45.
[18]  杨婷婷, 许光泉, 余世滔, 等. 煤层下部太原组岩溶水化学组分特征及其成因分析[J]. 水文地质工程地质, 2019, 46(2): 100-108.
[19]  Zhang, H.T., Xu, G.Q., Chen, X.Q., et al. (2019) Hydrogeochemical Characteristics and Groundwater Inrush Source Identification for a Mul-ti-aquifer System in a Coal Mine. Acta Geologica Sinica (English Edition), 93, 1922-1932.
https://doi.org/10.1111/1755-6724.14299
[20]  余世滔, 许光泉, 张海涛, 等. 深埋单斜条件下碳酸岩含水层水文地质特征研究[J]. 地下水, 2018, 40(6): 1-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133