全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进飞蛾火焰算法同步优化SVM参数和特征选择
Simultaneous Optimization of SVM Parameters and Feature Selection Based on Improved Moth-Flame Algorithm

DOI: 10.12677/CSA.2023.134082, PP. 833-843

Keywords: 飞蛾火焰算法,反馈共享机制,惯性权重因子,特征选择
Moth-Flame Algorithm
, Feedback-Sharing Mechanism, Inertia Weight Factor, Feature Selection

Full-Text   Cite this paper   Add to My Lib

Abstract:

特征选择和参数优化都是提高机器学习分类正确率和效率的重要方法,本文提出了一种基于改进的飞蛾火焰算法(IMFO)同步优化支持向量机(SVM)参数和特征选择的方法。针对飞蛾火焰算法(MFO)寻优精度较低和容易陷入局部最优的问题,首先,利用反馈共享机制增强飞蛾之间的信息交流,使个体容易脱离局部最优。其次,引入惯性权重因子改进飞蛾位置更新公式,增强算法的勘探能力。最后,将IMFO用于同步优化SVM的参数和特征选择中,并在12个UCI数据集上进行了特征选择实验,实验结果表明,该方法能有效地优化SVM参数和特征子集,在提高分类准确率的同时,减少特征数量。
Both feature selection and parameter optimization are important methods to improve the accuracy and efficiency of machine learning classification. In this paper, a method based on Improved Moth-Flame Algorithm (IMFO) is proposed to synchronously optimize support vector machine (SVM) parameters and feature selection. In order to solve the problem of low optimization accuracy and easily fall into local optimization of the Moth-Flame Algorithm (MFO), firstly, a feedback-sharing mechanism is used to enhance the information exchange between moths, so that individuals can easily escape from local optimization. Secondly, the inertia weight factor is introduced to improve the moths’ position updating formula to enhance the exploration ability of the algorithm. Finally, IMFO is used for synchronous SVM parameters and feature selection, and feature selection experi-ments are carried out on 12 UCI datasets. The experimental results show that the proposed method can effectively optimize SVM parameters and feature subsets, improve classification accuracy and reduce the number of features.

References

[1]  徐国天, 刘猛猛. 基于改进哈里斯鹰算法同步优化特征选择的恶意软件检测方法[J]. 信息网络安全, 2021, 21(12): 9-18.
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XQ19-tXiS13CsEu2v6XQyM2asg6idWUB-hYAtUT2IYjI&uniplatform=NZKPT
[2]  郭辉, 付接递, 李振东, 严岩, 李虓. 基于改进鲸鱼算法优化SVM参数和特征选择[EB/OL]. 吉林大学学报(工学版): 1-22.
https://doi.org/10.13229/j.cnki.jdxbgxb20211348, 20222-04-07.
[3]  刘雨豪, 廖平. 基于MFO算法的无刷直流电机模糊控制设计[J]. 仪表技术与传感器, 2021, 459(4): 107-111.
[4]  王秀莲, 杨帅, 高宏伟, 等. 基于MFO优化RBF神经网络的舵机控制与仿真[J]. 信息技术与信息化, 2023, 275(2): 179-183.
[5]  徐炜翔, 朱志宇. 基于飞蛾火焰算法的AUV三维全局路径规划[J]. 上海理工大学学报, 2021, 43(2): 148-155.
https://doi.org/10.13255/j.cnki.jusst.20200407005
[6]  Li, H.G., Liu, J.Y., Chen, L., Bai, J.B., Sun, Y.Y. and Lu, K. (2019) Chaos-Enhanced Moth-Flame Optimization Algorithm for Global Optimization. Journal of Systems Engineer-ing and Electronics, 30, 1144-1159.
https://doi.org/10.21629/JSEE.2019.06.10
[7]  何加文, 许贤泽, 高波. 多策略融合改进的飞蛾火焰优化算法[EB/OL]. 北京航空航天大学学报: 1-12.
https://doi.org/10.13700/j.bh.1001-5965.2022.0707, 2022-11-08.
[8]  Ma, L., Wang, C., Xie, N.G., Shi, M., Ye, Y. and Wang, L. (2021) Moth-Flame Optimization Algorithm Based on Diversity and Mutation Strategy. Applied Intelli-gence, 51, 5836-5872.
https://doi.org/10.1007/s10489-020-02081-9
[9]  Elaziz, M.A., Ewees, A.A., Ibrahim, R.A. and Lu, S.F. (2020) Opposition-Based Moth-Flame Optimization Improved by Differential Evolution for Feature Selec-tion. Mathematics and Computers in Simulation, 168, 48-75.
https://doi.org/10.1016/j.matcom.2019.06.017
[10]  Wang, G.G. (2018) Moth Search Algorithm: A Bio-Inspired Metaheuristic Algorithm for Global Optimization Problems. Memetic Computing, 10, 151-164.
https://doi.org/10.1007/s12293-016-0212-3
[11]  宋玉生, 刘光宇, 朱凌, 等. 改进的灰狼优化算法在SVM参数优化中的应用[J]. 传感器与微系统, 2022, 41(9): 151-155.
https://doi.org/10.13873/J.1000-9787(2022)09-0151-05
[12]  李守玉, 何庆, 杜逆索. 混沌反馈共享和群体协同效应的蝴蝶优化算法[J]. 计算机科学与探索, 2022, 16(7): 1661-1672.
[13]  Albashish, D., Hammouri, A.I., Braik, M., Atwan, J. and Sahran, S. (2021) Binary Biogeography-Based Optimization Based SVM-RFE for Feature Selection. Applied Soft Computing Journal, 101, Article ID: 107026.
https://doi.org/10.1016/j.asoc.2020.107026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133