全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生理响应型抗菌材料在创面修复中的应用
Applications of Antibacterial Materials with Physiological Responsiveness in Wound Repair

DOI: 10.12677/MS.2023.134035, PP. 306-317

Keywords: 创伤修复,感染抑制,抗菌材料,生理环境响应
Wound Repair
, Infection Inhibition, Antibacterial Materials, Physiological Responsiveness

Full-Text   Cite this paper   Add to My Lib

Abstract:

细菌感染是创面修复过程中的主要难题之一,往往会导致强烈炎症反应使得缺损组织难以愈合,严重者甚至会引起败血症、脓毒血症等全身性并发症,威胁患者的生命。尽管抗生素的引入能够极大地降低创伤部位细菌感染的风险,然而其使用过程往往导致细菌多药耐药性及对机体的毒副作用。因此,临床医疗迫切需要开发能够避免细菌耐药性,并能够在感染创伤部位精准抑菌的新型抗菌材料。为解决上述问题,考虑到细菌感染创面具有区别于正常组织的特殊微环境,如较低的pH值、过表达的特殊酶和高浓度的过氧化氢等。生理微环境响应性被进一步引入到抗菌材料的设计过程中,以实现创伤部位的精准抑菌降低治疗过程对机体的毒副作用。本文基于细菌感染特殊微环境,总结了近年来用于创伤修复的生理响应型抗菌材料的研究及应用进展。
One of the most serious issues in wound repair is bacterial infection. It frequently triggers severe inflammatory response, making the damaged tissue difficult to regenerate. Moreover, the bacterial infection can potentially develop systemic consequences like sepsis and sepsis, which threatened the patients’ lives. Alt-hough antibiotics can significantly reduce the level of bacterial infection at wound sites, the fre-quent usage of antibiotics leads to multidrug resistance and harmful side effects to the organism. Therefore, clinical medicine urgently requires the development of novel antibacterial materials, which are able to prevent the bacterial resistance and precisely inhibit microorganisms in infected wound sites. To address these issues, considering the wounds with bacterial infection has unique microenvironments compared to normal tissues, such as low pH, overexpressed particular enzymes, and high hydrogen peroxide concentrations. The physiological microenvironment responsiveness was further included to the fabrication process of antibacterial materials, which was expected to obtain accurate antibacterial inhibition at the wound site and limited the harmful side effects of the treatment on the organism. Based on the special microenvironment of bacterial infection, the re-search and application progress of physiologically responsive antibacterial materials for wound re-pair in recent years were reviewed.

References

[1]  Ellis, S., Lin, E.J. and Tartar, D. (2018) Immunology of Wound Healing. Current Dermatology Reports, 7, 350-358.
https://doi.org/10.1007/s13671-018-0234-9
[2]  Leong, C. and Gouliouris, T. (2021) Skin and Soft Tissue Infec-tions. Medicine, 49, 699-705.
https://doi.org/10.1016/j.mpmed.2021.08.007
[3]  Gurtner, G., Werner, S., Barrandon, Y. and Longaker, M.T. (2008) Wound Repair and Regeneration. Nature, 453, 314-321.
https://doi.org/10.1038/nature07039
[4]  Harrison, O. (2020) Poised for Tissue Repair. Science, 369, 152-153.
https://doi.org/10.1126/science.abc5618
[5]  Eming, S.A., Martin, P. and Tomic-Canic, M. (2014) Wound Repair and Regeneration: Mechanisms, Signaling, and translation. Science Translational Medicine, 6, 265sr6.
https://doi.org/10.1126/scitranslmed.3009337
[6]  Xu, C., Akakuru, O.U., Ma, X., et al. (2020) Nanoparti-cle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjugate Chemis-try, 31, 1708-1723.
https://doi.org/10.1021/acs.bioconjchem.0c00297
[7]  Lee, A.S., de Lencastre, H., Garau, J., et al. (2018) Methicil-lin-Resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4, Article No. 8033.
https://doi.org/10.1038/nrdp.2018.33
[8]  Binte Mohamed Salleh, N.A., Tanaka, Y., Sutarlie, L. and Su, S. (2022) Detecting Bacterial Infections in Wounds: A Review of Biosensors and Wearable Sensors in Comparison with Conven-tional Laboratory Methods. Analyst, 147, 1756-1776.
https://doi.org/10.1039/D2AN00157H
[9]  Brown, M.S., Ashley, B. and Koh, A. (2018) Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 6, Article 47.
https://doi.org/10.3389/fbioe.2018.00047
[10]  Parlet, C.P., Brown, M.M. and Horswill, A.R. (2019) Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends in Microbiology, 27, 497-507.
https://doi.org/10.1016/j.tim.2019.01.008
[11]  Cieplik, F., Deng, D.M., Crielaard, W., et al. (2018) Antimicrobial Photodynamic Therapy—What We Know and What We Don’t. Critical Reviews in Microbiology, 44, 571-589.
https://doi.org/10.1080/1040841X.2018.1467876
[12]  Imani, I.M., Kim, B., Xiao, X., et al. (2023) Ultra-sound-Driven on-Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Advanced Sci-ence, 10, e2204801.
https://doi.org/10.1002/advs.202204801
[13]  Wang, C., Xiao, Y., Zhu, W., et al. (2020) Pho-tosensitizer-Modified MnO2 Nanoparticles to Enhance Photodynamic Treatment of Abscesses and Boost Immune Protec-tion for Treated Mice. Small, 16, e2000589.
https://doi.org/10.1002/smll.202000589
[14]  Levy, S.B. and Marshall, B. (2004) Antibacterial Resistance World-wide: Causes, Challenges and Responses. Nature Medicine, 10, S122-S129.
https://doi.org/10.1038/nm1145
[15]  Czaplewski, L., Bax, R., Clokie, M., et al. (2016) Alternatives to Antibiot-ics—A Pipeline Portfolio Review. The Lancet Infectious Diseases, 16, 239-251.
https://doi.org/10.1016/S1473-3099(15)00466-1
[16]  Klein, E.Y., Milkowska-Shibata, M., Tseng, K.K., et al. (2021) Assessment of WHO Antibiotic Consumption and Access Targets in 76 Countries, 2000-15: An Analysis of Pharmaceutical Sales Data. The Lancet Infectious Diseases, 21, 107-115.
https://doi.org/10.1016/S1473-3099(20)30332-7
[17]  Browne, A.J., Chipeta, M.G., Haines-Woodhouse, G., et al. (2021) Global Antibiotic Consumption and Usage in Humans, 2000-18: A Spatial Modelling Study. The Lancet Plane-tary Health, 5, E893-E904.
https://doi.org/10.1016/S2542-5196(21)00280-1
[18]  Lambert, M.-L., Suetens, C., Savey, A., et al. (2011) Clinical Outcomes of Health-Care-Associated Infections and Antimicrobial Resistance in Patients Admitted to European Inten-sive-Care Units: A Cohort Study. The Lancet Infectious Diseases, 11, 30-38.
https://doi.org/10.1016/S1473-3099(10)70258-9
[19]  Sugden, R., Kelly, R. and Davies, S. (2016) Combatting An-timicrobial Resistance Globally. Nature Microbiology, 1, Article No. 16187.
https://doi.org/10.1038/nmicrobiol.2016.187
[20]  Liang, C., Wang, X.D., Zhou, R.T., et al. (2019) Thermo- and Oxidation-Responsive Homopolypeptide: Synthesis, Stimuli-Responsive Property and Antimicrobial Activity. Polymer Chemistry, 10, 2190-2202.
https://doi.org/10.1039/C8PY01735B
[21]  Quek, J.Y., Uroro, E., Goswami, N. and Vasilev, K. (2022) Design Principles for Bacteria-Responsive Antimicrobial Nanomaterials. Materials Today Chemistry, 23, Article ID: 100606.
https://doi.org/10.1016/j.mtchem.2021.100606
[22]  Wang, X., Shan, M., Zhang, S., et al. (2022) Stimu-li-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. Advanced Science, 9, Article ID: 2104843.
https://doi.org/10.1002/advs.202104843
[23]  Serena, T.E., Bayliff, S.W. and Brosnan, P.J. (2022) Bacterial Prote-ase Activity: A Prognostic Biomarker of Early Wound Infection. Journal of Wound Care, 31, 352-355.
https://doi.org/10.12968/jowc.2022.31.4.352
[24]  Obreja, M., Miftode, E.G., Stoleriu, I., et al. (2022) Hepa-rin-Binding Protein (HBP), Neutrophil Gelatinase-Associated Lipocalin (NGAL) and S100 Calcium-Binding Protein B (S100B) Can Confirm Bacterial Meningitis and Inform Adequate Antibiotic Treatment. Antibiotics, 11, Article No. 824.
https://doi.org/10.3390/antibiotics11060824
[25]  Wang, X., Wang, J., Qiu, L., et al. (2022) Gelatinase-Responsive Photothermal Nanotherapy Based on Au Nanostars Functionalized with Antimicrobial Peptides for Treating Staphylo-coccus aureus Infections. ACS Applied Nano Materials, 5, 8324-8333.
https://doi.org/10.1021/acsanm.2c01390
[26]  Chang, Y.-H., Chiang, C.-Y., Fu, E. and Chiu, H.-C. (2022) Staphy-lococcus aureus Enhances Gelatinase Activities in Monocytic U937 Cells and in Human Gingival Fibroblasts. Journal of Dental Sciences, 17, 1321-1328.
https://doi.org/10.1016/j.jds.2022.04.014
[27]  Qiu, L., Wang, C., Lei, X., et al. (2021) Gelatinase-Responsive Re-lease of an Antibacterial Photodynamic Peptide against Staphylococcus aureus. Biomaterials Science, 9, 3433-3444.
https://doi.org/10.1039/D0BM02201B
[28]  Tian, R., Qiu, X., Yuan, P., et al. (2018) Fabrication of Self-Healing Hydrogels with on-Demand Antimicrobial Activity and Sustained Biomolecule Release for Infected Skin Regeneration. ACS Applied Materials & Interfaces, 10, 17018-17027.
https://doi.org/10.1021/acsami.8b01740
[29]  Zhang, C. and Yang, M. (2022) Antimicrobial Peptides: From Design to Clinical Application. Antibiotics, 11, Article No. 349.
https://doi.org/10.3390/antibiotics11030349
[30]  Li, X., Zuo, S., Wang, B., Zhang, Y. and Wang, Y. (2022) Anti-microbial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules, 27, Article No. 2675.
https://doi.org/10.3390/molecules27092675
[31]  Stacy, A. and Belkaid, Y. (2019) Microbial Guardians of Skin Health. Science, 363, 227-228.
https://doi.org/10.1126/science.aat4326
[32]  Chai, D., Liu, W., Hao, X., et al. (2020) Mussel-Inspired Synthesis of Magnetic N-Halamine Nanoparticles for Antibacterial Recycling. Colloid and Interface Science Communications, 39, Ar-ticle ID: 100320.
https://doi.org/10.1016/j.colcom.2020.100320
[33]  Sheng, G.P., Ni, J.L., Xing, K.R., et al. (2021) Infection Mi-croenvironment-Responsive Multifunctional Peptide Coated Gold Nanorods for Bimodal Antibacterial Applications. Colloid and Interface Science Communications, 41, Article ID: 100379.
https://doi.org/10.1016/j.colcom.2021.100379
[34]  Pranantyo, D., Kang, E.-T. and Chan-Park, M.B. (2021) Smart Nanomicelles with Bacterial Infection-Responsive Disassembly for Selective Antimicrobial Applications. Biomaterials Science, 9, 1627-1638.
https://doi.org/10.1039/D0BM01382J
[35]  Liu, B., Li, J., Zhang, Z., Roland, J.D. and Lee, B.P. (2022) pH Re-sponsive Antibacterial Hydrogel Utilizing Catechol–Boronate Complexation Chemistry. Chemical Engineering Journal, 441, Article ID: 135808.
https://doi.org/10.1016/j.cej.2022.135808
[36]  Chowdhury, F., Ahmed, S., Rahman, M., et al. (2022) Chronic Wound-Dressing Chitosan-Polyphenolic Patch for Ph Responsive Local Antibacterial Activity. Materials Today Com-munications, 31, Article ID: 103310.
https://doi.org/10.1016/j.mtcomm.2022.103310
[37]  Wang, T., Dong, D., Chen, T., et al. (2022) Acidi-ty-Responsive Cascade Nanoreactor Based on Metal-Nanozyme and Glucose Oxidase Combination for Starving and Photothermal-Enhanced Chemodynamic Antibacterial Therapy. Chemical Engineering Journal, 446, Article ID: 137172.
https://doi.org/10.1016/j.cej.2022.137172
[38]  Fan, Z.Y. and Xu, H.P. (2020) Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. Polymer Reviews, 60, 114-143.
https://doi.org/10.1080/15583724.2019.1641515
[39]  Cheeseman, S., Christofferson, A.J., Kariuki, R., et al. (2020) Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. Advanced Science, 7, Article ID: 1902913.
https://doi.org/10.1002/advs.201902913
[40]  Yu, N.X., Cai, T.M., Sun, Y., et al. (2018) A Novel Anti-bacterial Agent Based on AgNPs and Fe3O4 Loaded Chitin Microspheres with Peroxidase-Like Activity for Synergistic Antibacterial Activity and Wound-Healing. International Journal of Pharmaceutics, 552, 277-287.
https://doi.org/10.1016/j.ijpharm.2018.10.002
[41]  Li, Y.Q., Xiu, W.J., Yang, K.L., et al. (2021) A Multifunctional Fenton Nanoagent for Microenvironment-Selective Anti-Biofilm and Anti-Inflammatory Therapy. Materials Horizons, 8, 1264-1271.
https://doi.org/10.1039/D0MH01921F
[42]  Rai, V., Moellmer, R. and Agrawal, D.K. (2022) Clinically Relevant Experimental Rodent Models of Diabetic Foot Ulcer. Molecular and Cellular Biochemistry, 477, 1239-1247.
https://doi.org/10.1007/s11010-022-04372-w
[43]  Kandregula, B., Narisepalli, S., Chitkara, D. and Mittal, A. (2022) Exploration of Lipid-Based Nanocarriers as Drug Delivery Systems in Diabetic Foot Ulcer. Molecular Pharma-ceutics, 19, 1977-1998.
https://doi.org/10.1021/acs.molpharmaceut.1c00970
[44]  Sharma, H., Sharma, S., Krishnan, A., et al. (2022) The Efficacy of Inflammatory Markers in Diagnosing Infected Diabetic Foot Ulcers and Diabetic Foot Osteomyelitis: Sys-tematic Review and Meta-Analysis. PLOS ONE, 17, e0267412.
https://doi.org/10.1371/journal.pone.0267412
[45]  Pouget, C., Dunyach-Remy, C., Pantel, A., et al. (2021) Alter-native Approaches for the Management of Diabetic Foot Ulcers. Frontiers in Microbiology, 12, Article 47618.
https://doi.org/10.3389/fmicb.2021.747618
[46]  Yu, J., Zhang, R.L., Chen, B.H., et al. (2022) Injectable Reactive Oxygen Species-Responsive Hydrogel Dressing with Sustained Nitric Oxide Release for Bacterial Ablation and Wound Healing. Advanced Functional Materials, 32, Article ID: 2202857.
https://doi.org/10.1002/adfm.202202857
[47]  Li, F., Zang, M.S., Hou, J.X., et al. (2021) Cascade Catalytic Nanoplatform Constructed by Laterally-Functionalized Pil-lar[5]Arenes for Antibacterial Chemodynamic Therapy. Journal of Materials Chemistry B, 9, 5069-5075.
https://doi.org/10.1039/D1TB00868D
[48]  Ramani, K., Cormack, T., Cartwright, A.N.R., et al. (2022) Regulation of Peripheral Inflammation by a Non-Viable, Non-Colonizing Strain of Commensal Bacteria. Frontiers in Immunology, 13, Article 768076.
https://doi.org/10.3389/fimmu.2022.768076
[49]  Rohner, N.A., Learn, G.D., Wiggins, M.J., Woofter, R.T. and von Recum, H.A. (2021) Characterization of Inflammatory and Fibrotic Encapsulation Responses of Implanted Materials with Bacterial Infection. ACS Biomaterials Science & Engineering, 7, 4474-4482.
https://doi.org/10.1021/acsbiomaterials.1c00505
[50]  Tokarz-Deptu?a, B., Palma, J., Baraniecki, ?., et al. (2021) What Function Do Platelets Play in Inflammation and Bacterial and Viral Infections? Frontiers in Immunology, 12, Arti-cle 770436.
https://doi.org/10.3389/fimmu.2021.770436
[51]  Yan, X., Yang, J., Wu, J., et al. (2021) Antibacterial Carbon Dots/Iron Oxychloride Nanoplatform for Chemodynamic and Photothermal Therapy. Colloid and Interface Sci-ence Communications, 45, Article ID: 100552.
https://doi.org/10.1016/j.colcom.2021.100552
[52]  Xiao, Y., Xu, M., Lv, N., et al. (2021) Dual Stimu-li-Responsive Metal-Organic Framework-Based Nanosystem for Synergistic Photothermal/Pharmacological Antibacterial Therapy. Acta Biomaterialia, 122, 291-305.
https://doi.org/10.1016/j.actbio.2020.12.045
[53]  Silva-Freitas, E.L., Pontes, T.R.F., Araujo-Neto, R.P., et al. (2017) Design of Magnetic Polymeric Particles as a Stimulus-Responsive System for Gastric Antimicrobial Therapy. AAPS Pharmscitech, 18, 2026-2036.
https://doi.org/10.1208/s12249-016-0673-1
[54]  Naseri, E. and Ahmadi, A. (2022) A Review on Wound Dress-ings: Antimicrobial Agents, Biomaterials, Fabrication Techniques, and Stimuli-Responsive Drug Release. European Polymer Journal, 173, Article ID: 111293.
https://doi.org/10.1016/j.eurpolymj.2022.111293
[55]  Liu, Y., Mao, S., Zhu, L., Chen, S. and Wu, C. (2021) Based on Tannic Acid and Thermoresponsive Microgels Design a Simple and High-Efficiency Multifunctional Antibacterial Coating. European Polymer Journal, 153, Article ID: 110498.
https://doi.org/10.1016/j.eurpolymj.2021.110498
[56]  Duan, Y., He, K., Zhang, G. and Hu, J. (2021) Photore-sponsive Micelles Enabling Codelivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules, 22, 2160-2170.
https://doi.org/10.1021/acs.biomac.1c00251
[57]  Zhang, H., Xie, M.Y., Chen, H.H., et al. (2021) Gas-Mediated Cancer Therapy. Environmental Chemistry Letters, 19, 149-166.
https://doi.org/10.1007/s10311-020-01062-1
[58]  Gong, W., Xia, C. and He, Q. (2022) Therapeutic Gas Delivery Strategies. WIREs Nanomedicine and Nanobiotechnology, 14, e1744.
https://doi.org/10.1002/wnan.1744
[59]  Zhou, Y., Yang, T., Liang, K. and Chandrawati, R. (2021) Metal-Organic Frameworks for Therapeutic Gas Delivery. Advanced Drug Delivery Reviews, 171, 199-214.
https://doi.org/10.1016/j.addr.2021.02.005
[60]  Tang, Y.N., Qin, Z., Yin, S.Y. and Sun, H. (2021) Transition Metal Oxide and Chalcogenide-Based Nanomaterials for Antibacterial Activities: An Overview. Nanoscale, 13, 6373-6388.
https://doi.org/10.1039/D1NR00664A
[61]  Gao, F., Li, X., Zhang, T., et al. (2020) Iron Nanoparticles Augmented Chemodynamic Effect by Alternative Magnetic Field for Wound Disinfection and Healing. Journal of Controlled Release, 324, 598-609.
https://doi.org/10.1016/j.jconrel.2020.06.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133