全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南省财政预算收支关系及预测研究
Research on the Relationship between Revenue and Expenditure of Fiscal Budget in Yunnan Province and Its Forecast

DOI: 10.12677/AAM.2023.124157, PP. 1510-1525

Keywords: 财政收支,协整检验,ECM模型,Granger因果检验,ARIMA模型
Fiscal Revenue and Expenditure
, Cointegration Test, ECM Model, Granger Ausality Test, ARIMA Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于1991~2021年云南省财政预算收支年度数据,采用Rstudio软件进行分析,对财政收入和财政支出序列进行二阶差分后得到两个平稳非随机时间序列,通过协整检验发现云南省财政收入和财政支出存在长期均衡关系,而ECM模型则显示其短期波动影响不显著,Granger因果关系检验结果显示财政支出是财政收入的格兰杰原因。接着通过模型的识别和定阶,比较AIC信息准则分别拟合最优的云南省财政预算收入的ARIMA模型,得到的最优财政预算收入模型ARIMA(1,2,0),同时使用2015~2021年的云南省财政预算收入数据真实值与模型拟合值进行比较,得出模型拟合平均误差率为2.9588%,认为模型的短期预测效果较为理想。最后使用该模型对云南省2022~2029年财政预算收入进行预测,预测结果可为财政预算编制提供参考。
Based on the annual data of fiscal budget revenue and expenditure of Yunnan Province from 1991 to 2021, this paper uses Rstudio software to analyze, and obtains two stationary non-random time series after the second-order difference of fiscal revenue and fiscal expenditure series. Through the cointegration test, it is found that there is a long-term equilibrium relationship between fiscal rev-enue and fiscal expenditure of Yunnan Province, while the ECM model shows that its short- term fluctuation has no significant impact, Granger causality test results show that fiscal expenditure is the Granger cause of fiscal revenue. Then through the identification and ranking of the model, com-pare the ARIMA model of the best fiscal budget revenue of Yunnan Province fitted by AIC infor-mation criteria, and get the best fiscal budget revenue model ARIMA(1, 2, 0). At the same time, compare the real value of the fiscal budget revenue data of Yunnan Province from 2015 to 2021 with the model fitting value, and get the average error rate of the model fitting is 2.9588%, and think that the short-term prediction effect of the model is ideal. Finally, the model is used to fore-cast the fiscal budget revenue of Yunnan Province from 2022 to 2029, and the forecast results can provide a reference for fiscal budget preparation.

References

[1]  郭婧, 岳希明. 财政收支因果关系研究文献综述[J]. 金融研究, 2017(2): 179-196.
[2]  Friedman, M. (1978) The Limitations of Tax Limitation. Policy Review, 5, 7-14.
[3]  Buchanan, J.M. and Wagner, R.E. (1977) Democracy in Deficit: The Political Legacy of Lord Keynes. Academic Press, New York.
[4]  Darrat, A.F. (1998) Tax and Spend, or Spend and Tax? An Inquiry into the Turkish Budgetary Process. Southern Economic Journal, 64, 940-956.
https://doi.org/10.1002/j.2325-8012.1998.tb00112.x
[5]  杨海生, 聂海峰, 陈少凌. 财政波动风险影响财政收支的动态研究[J]. 经济研究, 2014, 49(3): 88-100.
[6]  杨子晖, 赵永亮, 汪林. 财政收支关系与赤字的可持续性——基于门槛非对称性的实证研究[J]. 中国社会科学, 2016(2): 37-58+205-206.
[7]  Manage, N. and Marlow, M.L. (1986) The Causal Relation between Federal Expenditures and Receipts. Southern Economic Journal, 52, 617-629.
https://doi.org/10.2307/1059261
[8]  王立勇, 黄卫挺, 毕然. 中国财政失衡的动态调整特征研究[J]. 数量经济技术经济研究, 2015, 32(8): 89-103.
[9]  von Furstenberg, G.M., Green, R.J. and Jeong, J.H. (1986) Tax and Spend, or Spend and Tax? The Review of Economicsand Statistics, 68, 179-188.
https://doi.org/10.2307/1925496
[10]  Koren, S. and Stiassny, A. (1998) Tax and Spend, or Spend and Tax? An In-ternational Study. Journal of Policy Modeling, 20, 163-191.
https://doi.org/10.1016/S0161-8938(96)00073-7
[11]  Li, X.M. (2001) Government Revenue, Government Ex-penditure, and Temporal Causality: Evidence from China. Applied Economics, 33, 485-497.
https://doi.org/10.1080/00036840122982
[12]  马兹晖. 中国地方财政收入与支出——面板数据因果性与协整研究[J]. 管理世界, 2008(3): 40-48+57+186-187.
[13]  Duncan, G., Gor, W. and Saczypulam, J. (1993) Bayesian Forecasting for Seemingly Unrelated Time Series: Application to Local Government Revenue Forecasting. Management Science, 39, 275-293.
https://doi.org/10.1287/mnsc.39.3.275
[14]  陈盈, 赵伟, 闫晓茗. 自回归单整移动平均模型在财政支出预测中的应用[J]. 经济研究参考, 2014(33): 53-62.
[15]  王华春, 刘清杰. 中国财政收支关系与预测实证研究——基于1950年-2015年收支数据的格兰杰检验和ARIMA预测[J]. 地方财政研究, 2017(3): 53-62.
[16]  沈楠. 基于ARMA模型的中央和地方财政收支关系预测[J]. 统计与管理, 2019(5): 7-10.
[17]  Pesko, G.A. (1988) The Accu-racy of Government Forecasts and Budget Projections. National Tax Journal, 41, 483-501.
https://doi.org/10.1086/NTJ41788755
[18]  林国玺, 宣慧玉. 遗传算法和BP人工神经网络在税收预测中的应用[J]. 系统工程理论方法应用, 2005, 14(2): 145-148.
[19]  Buettner, T. and Kauder, B. (2010) Revenue Forecasting Practices: Differences Across Countries and Consequences for Forecasting Performance. Fiscal Studies, 31, 313-340.
https://doi.org/10.1111/j.1475-5890.2010.00117.x
[20]  谢姗, 汪卢俊. 中期预算框架下我国财政收入预测研究[J]. 财贸研究, 2015, 26(4): 64-70.
[21]  方博, 何朗. 关于ARMA-BP神经网络组合模型的财政收入预测[J]. 数学杂志, 2015, 35(3): 709-713.
[22]  蒋锋, 张婷, 周琰玲. 基于Lasso-GRNN神经网络模型的地方财政收入预测[J]. 统计与决策, 2018, 34(19): 91-94.
[23]  田发. “十四五”时期地方政府一般公共预算收支预测及应对策略[J]. 当代财经, 2022(5): 38-50.
[24]  蔡宁, 刘勇. 中国省级地方政府债务规模预测——基于全口径财政收支框架的研究[J]. 金融论坛, 2017, 22(2): 25-34+45.
[25]  郭婧, 陶新宇. 财政收支因果关系: Meta回归分析[J]. 财政研究, 2020(7): 24-38.
[26]  董根泰. 中国财政收支相互关系的实证检验[J]. 财经论丛, 2012(5): 20-26.
[27]  王燕. 时间序列分析: 基于R [M]. 北京: 中国人民大学出版社, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133