全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全测地黎曼叶状结构中的 Hopf-Rinow 定理
Hopf-Rinow Theorem on Totally Geodesic Riemannian Foliations

DOI: 10.12677/AAM.2023.124155, PP. 1496-1503

Keywords: 全测地,黎曼叶状结构,广义 Bott 联络,Hopf-Rinow 定理
Totally Geodesic
, Riemannian Foliations, The Generalized Bott Connection, Hopf-Rinow Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究全测地黎曼叶状结构中关于广义 Bott 联络的测地线理论, 并将部分 Hopf-Rinow 定理推广到全测地黎曼叶状结构上. 它已被推广到一般的可求长的度量空间和伪厄米流形上. 在我们研究的过程中, 高斯引理的不成立带来了一些困难. 从而我们引入了自然距离 δ, 并得到若 (M, δ) 完 备则测地线完备. 但由于条件的局限性, 另一面不成立.
In this paper, we study the theory of geodesics with respect to the generalized Bot-t connection on totally geodesic Riemannian foliations, and part of the Hopf-Rinow theorem is generalized to totally geodesic Riemannian foliations. It has been gener- alized to length-metric spaces and pseudo-Hermitian manifolds. In the course of our research, the invalidity of Gauss lemma poses some di?culties. Thus we introduce the natural distance δ, and state that if (M, δ) is complete, then the geodesic is complete. However, due to the limitations of the conditions, the other side is not true.

References

[1]  Dong, Y.X. and Zhang, W. (2018) Comparison Theorems in Pseudo-Hermitian Geometry and Applications. Osaka Journal of Mathematics, 55, 347-367.
[2]  Baudoin, F. and Bonnefont, M. (2015) Curvature-Dimension Estimates for the Laplace- Beltrami Operator of a Totally Geodesic Foliation. Nonlinear Analysis, 126, 159-169.
https://doi.org/10.1016/j.na.2015.06.025
[3]  Baudoin, F., Grong, E., Kuwada, K. and Thalmaier, A. (2019) Sub-Laplacian Comparison Theorems on Totally Geodesic Riemannian Foliations. Calculus of Variations and Partial Di?erential Equations, 58, Article No. 130.
https://doi.org/10.1007/s00526-019-1570-8
[4]  Dong, Y.X. (2020) Eells-Sampson Type Theorems for Subelliptic Harmonic Maps from Sub- Riemannian Manifolds. The Journal of Geometric Analysis, 31, 3608-3655.
https://doi.org/10.1007/s12220-020-00408-z
[5]  Petersen, P. (2006) Riemannian Geometry. Springer, New York.
[6]  Kobayashi, S. and Nomizu, K. (1969) Foundations of Di?erential Geometry, Vol. I. Interscience, New York.
[7]  Chavel, I. (2006) Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge.
[8]  Bridson, M.R. and Hae?iger, A. (1999) Metric Spaces of Non-Positive Curvature. In: Grundlehren der mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin.
[9]  Gromov, M., et al. (1999) Metric Structures for Riemannian and Non-Riemannian Spaces. Vol. 152. Birkh?user, Boston.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133