全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不含平衡圈的符号图的分解
Decomposition of Signed Graphs without Contain Balanced Cycle

DOI: 10.12677/AAM.2023.124153, PP. 1483-1486

Keywords: 符号图,拟阵,图的分解,最大平均度
Signed Graphs
, Matroids, Decomposition of Graphs, Maximum Average Degree

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要在符号图框架拟阵的定义下,通过证明所含的圈中没有平衡圈的符号图G上的参数\"\"大于等于\"\",从而证明在k=1,以及任意的非负整数d的条件下,不含平衡圈的符号图能分解成两个独立集B1和I,且I在G中导出图G[I]中顶点最大度为d。
In this paper, we study the signed graph based on the frame matroid. For the signed graph G with-out contains any balanced cycle, we prove the parameter \"\" is greater than \"\" , then we prove when k=1 and any positive integers d, the signed graph G without con-tains any balanced cycle can decompose into two independent sets B1 and I, the degree of vertex in the induced graph G[I] is at most d.

References

[1]  Edmonds, J. (1965) Minimum Partition of a Matroid into Independent Subsets. Journal of Research of the National Bu-reau of Standards, Section B, 69B, 67-72.
https://doi.org/10.6028/jres.069B.004
[2]  Edmonds, J. (1965) Leh-man’s Switching Game and a Theorem of Tutte and Nash-Williams. Journal of Research of the National Bureau of Standards, Section B, 69B, 73-77.
https://doi.org/10.6028/jres.069B.005
[3]  Kierstead, H.A. and Yang, D. (2005) Very Asymmetric Marking Games. Order, 22, 93-107.
https://doi.org/10.1007/s11083-005-9012-y
[4]  Fan, G., Li, Y., Song, N. and Yang, D. (2015) Decomposing a Graph into Pseudoforests with One Having Bounded Degree. Journal of Combinatorial Theory, Series B, 115, 72-95.
https://doi.org/10.1016/j.jctb.2015.05.003
[5]  方旭倩. 强九龙树猜想及九龙树定理的推广研究[D]: [硕士学位论文]. 金华: 浙江师范大学, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133