|
一种基于动态约瑟夫遍历和比特平面交叉置乱–扩散的彩色图像加密算法
|
Abstract:
本文提出一种基于动态约瑟夫遍历和比特平面交叉置乱–扩散的彩色图像加密算法。首先,对图像的各行像素值求和量化,作为约瑟夫遍历的起点,使得约瑟夫遍历依赖于明文图像;利用斜帐篷混沌系统生成混沌序列并进行量化,得到约瑟夫遍历的步长,然后实现彩色图像的像素位置的约瑟夫遍历,达到置乱的效果。其次,将置乱后的图像像素值进行高低四比特分裂,利用变型Chen混沌系统生成的改进混沌序列对高低四比特序列进行动态置换,初步改变像素值。最后,通过变型Chen混沌系统生成的伪随机灰度值序列对初步加密的密文图像进行扩散操作,进一步增强加密算法的安全性。实验仿真结果表明,该算法加密效果优良,具有密钥空间大、密钥和明文敏感性高、密文图像统计性能好等优点,能够很好地抵御穷举攻击、统计分析攻击、差分攻击和选择明文、已知明文攻击等。
A color image encryption algorithm based on dynamic Joseph traversal and crossing bit-plane scrambling-diffusion is proposed in this paper. Firstly, the values of each pixel of the image are summed and quantized as the starting numbers of Joseph traversal, which makes Joseph traversal depend on the plaintext image. The chaotic sequence generated by skew tent chaotic system is quantized to obtain the steps of Joseph traversal. Then, the Joseph traversal of the pixel position of a color image is realized to achieve the scrambling effect. Secondly, the scrambled image is divided into high and low 4-bit planes, and the chaotic sequences generated by the improved chaotic sequences derived by one modified Chen chaotic system are used to dynamically confuse the high and low 4-bit planes and preliminarily change the pixels values. Finally, the initially encrypted image is diffused by the pseudo-random gray value sequence yielded by the modified Chen chaotic system, further enhancing the security of the encryption algorithm. Experimental simulation results show that the proposed algorithm has a good encryption effect, has the advantages of large key space, high key sensitivity and plaintext sensitivity, good statistical performance for cipher images and so on, and can well resist exhaustive analysis attack, statistical analysis attack, differential attack, chosen-plaintext attack, known-plaintext, etc.
[1] | Schneier, B. (1995) Cryptography: Theory and Practice. CRC Press, Boca Raton. |
[2] | Fridrich, J. (1998) Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. International Journal of Bifurcation and Chaos, 8, 1259-1284. https://doi.org/10.1142/S021812749800098X |
[3] | Ye, R. (2011) A Novel Chaos-Based Image Encryption Scheme with an Efficient Permutation-Diffusion Mechanism. Optics Communications, 284, 5290-5298. https://doi.org/10.1016/j.optcom.2011.07.070 |
[4] | Pareek, N.K., Patidar, V. and Sud, K.K. (2006) Image Encryp-tion Using Chaotic Logistic Map. Image and Vision Computing, 24, 926-934. https://doi.org/10.1016/j.imavis.2006.02.021 |
[5] | 苏杰彬, 朱子怡, 钟幸贤, 刘晶, 叶瑞松. 基于二维斜帐篷映射和中国剩余定理的彩色图像加密算法[J]. 图像与信号处理, 2022, 11(2): 54-67. |
[6] | Patidar, V., Pareek, N.K. and Sud, K.K. (2009) A New Substitution-Diffusion Based Image Cipher Using Chaotic Standard and Logistic Maps. Communications in Nonlinear Science and Numerical Simulation, 14, 3056-3075.
https://doi.org/10.1016/j.cnsns.2008.11.005 |
[7] | 陈锦彬, 叶瑞松. 基于改进Henon映射的混沌图像加密算法[J]. 计算机科学与应用, 2022, 12(2): 422-435. |
[8] | Alvarez, G. and Li, S. (2006) Breaking an Encryption Scheme Based on Chaotic Baker Map. Physics Letters A, 352, 78-82. https://doi.org/10.1016/j.physleta.2005.11.055 |
[9] | Xiao, D., Liao, X. and Wei, P. (2009) Analysis and Improve-ment of a Chaos-Based Image Encryption Algorithm. Chaos, Solitons and Fractals, 40, 2191-2199. https://doi.org/10.1016/j.chaos.2007.10.009 |
[10] | Rhouma, R., Solak, E. and Belghith, S. (2010) Cryptanalysis of a New Substitution-Diffusion Based Image Cipher. Communications in Nonlinear Science and Numerical Simulation, 15, 1887-1892. https://doi.org/10.1016/j.cnsns.2009.07.007 |
[11] | Zhu, C. (2012) A Novel Image Encryption Scheme Based on Improved Hyperchaotic Sequences. Optics Communications, 285, 29-37. https://doi.org/10.1016/j.optcom.2011.08.079 |
[12] | Ni, J., Tang, Y. and Ye, Y. (2022) An Image Encryption Scheme Based on 4D Chaotic System and Permutation-Diffusion Operations. Proceedings of 8th Annual International Conference on Network and Information Systems for Computers, Hangzhou, 16-18 September 2022, 354-360. |
[13] | Wang, S., Peng, Q. and Du, B. (2022) Chaotic Color Image Encryption Based on 4D Chaotic Maps and DNA Sequence. Optics & Laser Technology, 148, Article ID: 107753. https://doi.org/10.1016/j.optlastec.2021.107753 |
[14] | Ye, R. and Huang, H. (2021) An Adaptive Image Encryption Scheme Using Fractal Dynamical System and DNA Operation. Proceedings of 2021 IEEE International Conference on Electronic Technology, Communication & Information, Xi’an, 18-20 August 2021, 284-289. https://doi.org/10.1109/ICETCI53161.2021.9563513 |
[15] | 牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法[J]. 电子与信息学报, 2020, 42(6): 1383-1391. |
[16] | 梁杰涛, 苏杰彬, 王俊刚, 叶瑞松. 基于混沌和位平面交换的彩色图像加密算法[J]. 图像与信号处理, 2021, 10(2): 88-98. |
[17] | 张勇. 混沌数字图像加密[M]. 北京: 清华大学出版社, 2016. |
[18] | Rukhin, A., Soto, J., Nechvatal, J., et al. (2010) A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication 800-22 Revision 1a. National Institute of Standards and Technology (NIST). |
[19] | Shannon, C.E. (1949) Communication Theory of Secrecy Systems. The Bell System Technical Journal, 28, 656-715.
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x |
[20] | Chai, X., Fu, X., Gan, Z., Lu, Y. and Chen, Y. (2019) A Color Image Cryptosystem Based on Dynamic DNA Encryption and Chaos. Signal Processing, 155, 44-62. https://doi.org/10.1016/j.sigpro.2018.09.029 |