|
带有分数阶耗散的MHD方程在Besov空间的正则性准则
|
Abstract:
本文主要研究了不带密度且速度场带有分数阶耗散的三维MHD流体方程组在齐次Besov空间中的一个正则性准则。证明了当方程组(1.1)的弱解 满足条件(2.1)时,方程组(1.1)在(0,T]上是正则的。
In this paper, we study the regularity criterion for 3D MHD equations without density and with frac-tional dissipation in homogeneous Besov space. It is proved that when the weak solution of equa-tions (1.1) satisfies condition (2.1), equations (1.1) is regular on (0,T] .
[1] | Abidi, H. and Paicu, M. (2007) Existence globale pour un fluide inhomogene. Annales de l’institut Fourier, 57, 883-917. https://doi.org/10.5802/aif.2280 |
[2] | Paicu, M. and Zhang, P. (2012) Global Solutions to the 3-D Incompressible Inhomogeneous Navier-Stokes System. Journal of Functional Analysis, 262, 3556-3584. https://doi.org/10.1016/j.jfa.2012.01.022 |
[3] | Qian, C.Y. and Zhang, P. (2021) Global Well-Posedness of 3-D In-compressible Inhomogeneous Navier-Stokes Equations. Methods and Applications of Analysis, 28, 507-546. https://doi.org/10.4310/MAA.2021.v28.n4.a6 |
[4] | Abidi, H. and Paicu, M. (2008) Global Existence for the Mag-netohydrodynamic System in Critical Spaces. Proceedings of the Royal Society of Edinburgh Section A, 138, 447-476. https://doi.org/10.1017/S0308210506001181 |
[5] | Zhai, X.P., Li, Y.S. and Yan, W. (2015) Global Well-Posedness for the 3-D Incompressible Inhomogeneous MHD System in the Critical Besov Spaces. Journal of Mathematical Analy-sis and Applications, 432, 179-195.
https://doi.org/10.1016/j.jmaa.2015.06.048 |
[6] | Chen, Q., Tan, Z. and Wang, Y.J. (2011) Strong Solutions to the Incompressible Magnetohydrodynamic Equations. Mathematical Methods in the Applied Sciences, 34, 94-107. https://doi.org/10.1002/mma.1338 |
[7] | Gui, G. (2014) Global Well-Posedness of the Two-Dimensional Incom-pressible Magnetohydrodynamics System with Variable Density and Electrical Conductivity. Journal of Functional Analysis, 267, 1488-1539.
https://doi.org/10.1016/j.jfa.2014.06.002 |
[8] | Cao, C., Wu, J. and Yuan, B. (2014) The 2D Incompressible Mag-netohydrodynamics Equations with Only Magnetic Diffusion. SIAM Journal on Mathematical Analysis, 46, 588-602. https://doi.org/10.1137/130937718 |
[9] | Fan, J., Malaikah, H., Monaquel, S., Nakamura, G. and Zhou, Y. (2014) Global Cauchy Problem of 2D Generalized MHD Equations. Monatshefte für Mathematik, 175, 127-131. https://doi.org/10.1007/s00605-014-0652-0 |
[10] | Jiu, Q. and Niu, D. (2006) Mathematical Results Related to a Two-Dimensional Magneto-Hydrodynamic Equations. Acta Mathematica Scientia. Series B. English Edition, 26, 744-756. https://doi.org/10.1016/S0252-9602(06)60101-X |
[11] | Tran, C.V., Yu, X. and Zhai, Z. (2013) Note on Solution Regularity of the Generalized Magnetohydrodynamic Equations with Partial Dissipation. Nonlinear Analysis, 85, 43-51. https://doi.org/10.1016/j.na.2013.02.019 |
[12] | Wu, J. (2011) Global Regularity for a Class of Generalized Magnetohydrodynamic Equations. Journal of Mathematical Fluid Mechanics, 13, 295-305. https://doi.org/10.1007/s00021-009-0017-y |
[13] | Heywood, J.G. (1980) The Navier-Stokes Equations: On the Ex-istence, Regularity and Decay of Solution. Indiana University Mathematics Journal, 29, 639-681. https://doi.org/10.1512/iumj.1980.29.29048 |
[14] | He, B.B. (2021) Regularity Criteria of Weak Solutions to the 3D Micropolar Fluid Equations. Advances in Applied Mathematics, 10, 3039-3044. https://doi.org/10.12677/AAM.2021.109318 |
[15] | Le, A.T. (2021) The Logarithmic Regularity Criteria for Velocity of Boussinesq Equations with Fractional Laplacian Dissipation. Advances in Applied Mathematics, 10, 2917-2922. https://doi.org/10.12677/AAM.2021.109305 |