全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有分数阶耗散的MHD方程在Besov空间的正则性准则
Regularity Criteria for MHD Equations with Fractional Laplacian Dissipation in Besov Spaces

DOI: 10.12677/AAM.2023.124150, PP. 1461-1466

Keywords: MHD流体方程组,齐次Besov空间,分数阶耗散,正则性准则
MHD Equations
, Homogeneous Besov Space, Fractional Laplacian Dissipation, Regularity Criteria

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了不带密度且速度场带有分数阶耗散的三维MHD流体方程组在齐次Besov空间中的一个正则性准则。证明了当方程组(1.1)的弱解 满足条件(2.1)时,方程组(1.1)在(0,T]上是正则的。
In this paper, we study the regularity criterion for 3D MHD equations without density and with frac-tional dissipation in homogeneous Besov space. It is proved that when the weak solution of equa-tions (1.1) satisfies condition (2.1), equations (1.1) is regular on (0,T] .

References

[1]  Abidi, H. and Paicu, M. (2007) Existence globale pour un fluide inhomogene. Annales de l’institut Fourier, 57, 883-917.
https://doi.org/10.5802/aif.2280
[2]  Paicu, M. and Zhang, P. (2012) Global Solutions to the 3-D Incompressible Inhomogeneous Navier-Stokes System. Journal of Functional Analysis, 262, 3556-3584.
https://doi.org/10.1016/j.jfa.2012.01.022
[3]  Qian, C.Y. and Zhang, P. (2021) Global Well-Posedness of 3-D In-compressible Inhomogeneous Navier-Stokes Equations. Methods and Applications of Analysis, 28, 507-546.
https://doi.org/10.4310/MAA.2021.v28.n4.a6
[4]  Abidi, H. and Paicu, M. (2008) Global Existence for the Mag-netohydrodynamic System in Critical Spaces. Proceedings of the Royal Society of Edinburgh Section A, 138, 447-476.
https://doi.org/10.1017/S0308210506001181
[5]  Zhai, X.P., Li, Y.S. and Yan, W. (2015) Global Well-Posedness for the 3-D Incompressible Inhomogeneous MHD System in the Critical Besov Spaces. Journal of Mathematical Analy-sis and Applications, 432, 179-195.
https://doi.org/10.1016/j.jmaa.2015.06.048
[6]  Chen, Q., Tan, Z. and Wang, Y.J. (2011) Strong Solutions to the Incompressible Magnetohydrodynamic Equations. Mathematical Methods in the Applied Sciences, 34, 94-107.
https://doi.org/10.1002/mma.1338
[7]  Gui, G. (2014) Global Well-Posedness of the Two-Dimensional Incom-pressible Magnetohydrodynamics System with Variable Density and Electrical Conductivity. Journal of Functional Analysis, 267, 1488-1539.
https://doi.org/10.1016/j.jfa.2014.06.002
[8]  Cao, C., Wu, J. and Yuan, B. (2014) The 2D Incompressible Mag-netohydrodynamics Equations with Only Magnetic Diffusion. SIAM Journal on Mathematical Analysis, 46, 588-602.
https://doi.org/10.1137/130937718
[9]  Fan, J., Malaikah, H., Monaquel, S., Nakamura, G. and Zhou, Y. (2014) Global Cauchy Problem of 2D Generalized MHD Equations. Monatshefte für Mathematik, 175, 127-131.
https://doi.org/10.1007/s00605-014-0652-0
[10]  Jiu, Q. and Niu, D. (2006) Mathematical Results Related to a Two-Dimensional Magneto-Hydrodynamic Equations. Acta Mathematica Scientia. Series B. English Edition, 26, 744-756.
https://doi.org/10.1016/S0252-9602(06)60101-X
[11]  Tran, C.V., Yu, X. and Zhai, Z. (2013) Note on Solution Regularity of the Generalized Magnetohydrodynamic Equations with Partial Dissipation. Nonlinear Analysis, 85, 43-51.
https://doi.org/10.1016/j.na.2013.02.019
[12]  Wu, J. (2011) Global Regularity for a Class of Generalized Magnetohydrodynamic Equations. Journal of Mathematical Fluid Mechanics, 13, 295-305.
https://doi.org/10.1007/s00021-009-0017-y
[13]  Heywood, J.G. (1980) The Navier-Stokes Equations: On the Ex-istence, Regularity and Decay of Solution. Indiana University Mathematics Journal, 29, 639-681.
https://doi.org/10.1512/iumj.1980.29.29048
[14]  He, B.B. (2021) Regularity Criteria of Weak Solutions to the 3D Micropolar Fluid Equations. Advances in Applied Mathematics, 10, 3039-3044.
https://doi.org/10.12677/AAM.2021.109318
[15]  Le, A.T. (2021) The Logarithmic Regularity Criteria for Velocity of Boussinesq Equations with Fractional Laplacian Dissipation. Advances in Applied Mathematics, 10, 2917-2922.
https://doi.org/10.12677/AAM.2021.109305

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133