全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贵金属改性二氧化锡材料传感性能研究进展
Research Progress on Sensing Properties of Noble Metal Modified Tin Dioxide Materials

DOI: 10.12677/APP.2023.134008, PP. 67-80

Keywords: 贵金属,掺杂,改性,SnO2
Noble Metal
, Doped, Modified, SnO2

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于氧化锡纳米结构的气体传感器近年来得到了广泛的研究,本文综述了贵金属担载氧化锡纳米结构气体传感器的最新进展,介绍了贵金属担载氧化锡纳米结构的主要制备方法和氧化锡气体传感器的工作原理。研究表明,掺杂贵金属,高比表面积,独特的形貌和尺寸效应可以显著提高氧化锡的传感性能。本文系统论述了贵金属担载在SnO2传感的重要应用,并对贵金属担载SnO2进行总结展望。
Gas sensors based on tin oxide nanostructures have been widely studied in recent years. In this paper, the latest progress of noble metal supported tin oxide nanostructures gas sensors is reviewed. The main preparation methods of noble metal supported tin oxide nanostructures and the working principle of tin oxide gas sensors are introduced. Studies have shown that doping noble metals, high specific surface area, unique morphology and size effects can significantly improve the sensing performance of tin oxide. This paper systematically discusses the important application of noble metal loading in SnO2 sensing, and summarizes the prospect of noble metal loading SnO2.

References

[1]  Meng, X.L., Bi, M.S. and Gao, W. (2022) Ultrasensitive Gas Sensor Based on Pd/SnS2/SnO2 Nanocomposites for Rapid Detection of H2. Sensors and Actu-ators B: Chemical, 359, Article ID: 132406.
https://doi.org/10.1016/j.snb.2022.131612
[2]  Cheng, J.P., Wang, J., Li, Q.Q., et al. (2016) A Review of Recent Developments in Tin Dioxide Composites for Gas Sensing Application. Journal of Industrial and Engineering Chemistry, 44, 1-22.
https://doi.org/10.1016/j.jiec.2016.08.008
[3]  Li, H.Y., Cai, Z.X., Ding, J.C., et al. (2015) Gigantically En-hanced NO Sensing Properties of WO3/SnO2 Double Layer Sensors with Pd Decoration. Sensors and Actuators B: Chemical, 220, 398-405.
https://doi.org/10.1016/j.snb.2015.05.091
[4]  Liu, Z.W., Yang, X., Sun, J., et al. (2018) PVDF Modified Pd-SnO2 Hydrogen Sensor with Stable Response under High Humidity. Materials Letters, 212, 283-286.
https://doi.org/10.1016/j.matlet.2017.10.105
[5]  Courrol, L.C., Silva, F.R. and Gomes, L. (2007) A Simple Method to Synthesize Silver Nanoparticles by Photo-Reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 54-57.
https://doi.org/10.1016/j.colsurfa.2007.04.052
[6]  Jiang, F., Zheng, Z., Xu, Z.Y., Zheng, S.R., et al. (2006) Aqueous Cr(VI) Photo-Reduction Catalyzed by TiO2 and Sulfated TiO2. Journal of Hazardous Materials, 134, 94-103.
https://doi.org/10.1016/j.jhazmat.2005.10.041
[7]  Li, J., Yang, M., Cheng, X., et al. (2021) Fast Detection of NO2 by Porous SnO2 Nanotoast Sensor at Low Temperature. Journal Hazardous Materials, 419, Article ID: 126414.
https://doi.org/10.1016/j.jhazmat.2021.126414
[8]  Xu, J., Bai, H.Y., Lin, H.F., et al. (2011) Prepara-tion of Hyaluronic Acid-Nano Silver Composites by Photo-Reduction. Journal of Functional Polymer, 24, 238-242.
[9]  Yu, H.M., Li, J.Z., Luo, W.B., et al. (2020) Het-ero-Structure La2O3-Modified SnO2-Sn3O4 from Tin Anode Slime for Highly Sensitive and ppb-Level Formaldehyde Detection. Applied Surface Science, 513, Article ID: 145825.
https://doi.org/10.1016/j.apsusc.2020.145825
[10]  Shulga, Y.M., Martynenko, V.M., Muradyan, V.E., et al. (2010) Gaseous Products of Thermo- and Photo-Reduction of Graphite Oxide. Chemical Physics Letters, 498, 287-291.
https://doi.org/10.1016/j.cplett.2010.08.056
[11]  Li, Y., Shen, Y., Guo, J., et al. (2012) Photo Reduction of Cr(VI) by Pyrite Assisted by Oxalic Acid. Environmental Chemistry, 31, 1619-1624.
[12]  Rosmalini Ab Kadir, Zhang, W., Wang, Y.C., et al. (2015) Anodized Nanoporous WO3 Schottky Contact Structures for Hydrogen and Ethanol Sensing. Journal of Materials Chemistry A, 3, 7994-8001.
https://doi.org/10.1039/C4TA06286H
[13]  Preethi, J., Farzana, M.H., Meenakshi, S., et al. (2017) Photo-Reduction of Cr(VI) Using Chitosan Supported Zinc Oxide Materials. Interna-tional Journal of Biological Macromolecules, 104, 1783-1793.
https://doi.org/10.1016/j.ijbiomac.2017.02.082
[14]  Gu, C.P., Guan, W.M., Liu, X.S., et al, (2017) Controlled Synthesis of Porous Ni-Doped SnO2 Microstructures and Their Enhanced Gas Sensing Properties. Journal of Alloys and Compounds, 692, 855-864.
https://doi.org/10.1016/j.jallcom.2016.09.103
[15]  Martin, W. and Maximilian, V. (2022) Active BiVO4 Swimmers Propelled by Depletion Gradients Caused by Photodeposition. Adcanced Science News, 3, 2206885.
[16]  Kou, X.Y., Xie, N., Chen, F., et al. (2018) Superior Ace-tone Gas Sensor Based on Electrospun SnO2 Nanofibers by Rh Doping. Sensors and Actuators B: Chemical, 256, 861-869.
https://doi.org/10.1016/j.snb.2017.10.011
[17]  Sun, R., Wang, D., Mao, W., et al. (2014) Roles of Chloride Ion in Photo-Reduction/Oxidation of Mercury. Chinese Science Bulletin, 59, 3390-3397.
https://doi.org/10.1007/s11434-014-0435-y
[18]  Zhang, L., Tong, R.B., Ge, W.Y., et al. (2020) Facile One-Step Hydrothermal Synthesis of SnO2 Microspheres with Oxygen Vacancies for Superior Ethanol Sensor. Journal of Alloys and Compounds, 814, Article ID: 152266.
https://doi.org/10.1016/j.jallcom.2019.152266
[19]  Wu, J., Yan, B., Meng, J., et al. (2022) Catalyst-Free Photo-Reductions of Aromatic Olefins and Carbonyl Compounds. Organic & Biomolecular Chemistry, 20, 8638-8642.
https://doi.org/10.1039/D2OB01353C
[20]  Rohit, S., Anastasia, S., Nikolaos, K., Christos, P., et al. (2023) Optimization of the Hydrogen Response Characteristics of Halogon-Doped SnO2. Scienticific Reports, 13, 2524.
https://doi.org/10.1038/s41598-023-29312-6
[21]  Wu, Z., Cong, S., Zhang, W., et al. (2005) Synthesis of Cu/ZnO Composite Nanoparticles by Photo-Reduction. Chinese Journal of Rare Metals, 29, 271-274.
[22]  Das, S. and Jayaraman, V. (2014) SnO2: A Compre-hensive Review on Structures and Gas Sensors. Progress in Materials Science, 66, 112-255.
https://doi.org/10.1016/j.pmatsci.2014.06.003
[23]  Gu, D., Li, X.G., Zhao, Y.Y., et al. (2017) Enhanced NO2 Sensing of SnO2/SnS2 Heterojunction Based Sensor. Sensors and Actuators B: Chemical, 244, 67-76.
https://doi.org/10.1016/j.snb.2016.12.125
[24]  Yu, H., Tan, X., Sun, S., et al. (2021) Engineering Paper-Based Visible Light-Responsive Sn-Self Doped Domed SnO2 Nanotubes for Ultrasensitive Photoelectrochemical Sensor. Biosensors and Bioelectronics, 185, Article ID: 113250.
https://doi.org/10.1016/j.bios.2021.113250
[25]  Zhang, J.T., Jia, X.H., Lian, D.D., et al. (2021) Enhanced Selective Acetone Gas Sensing Performance by Fabricating ZnSnO3/SnO2 Concave Microcube. Applied Surface Science, 542, Article ID: 148555.
https://doi.org/10.1016/j.apsusc.2020.148555
[26]  Cai, Z.C. and Park, S. (2020) Enhancement Mechanisms of Ethanol-Sensing Properties Based on Cr2O3 Nanoparticle-Anchored SnO2 Nanowires. Journal of Materials Research and Technology, 9, 271-281.
https://doi.org/10.1016/j.jmrt.2019.10.055
[27]  Chen, X.T., Liu, T., Wu, R., et al. (2022) Gas Sensors Based on Pd-Decorated and Sb-Doped SnO2 for Hydrogen Detection. Journal of Industrial and Engineering Chemistry, 115, 491-499.
https://doi.org/10.1016/j.jiec.2022.08.035
[28]  Mohammad, A., Mohammad, E., Karim, M.R., et al. (2021) Ag-Modified SnO2-Graphitic-Carbon Nitride Nanostructures for Electrochemical Sensor Applications. Ce-ramics International, 47, 23578-23589.
https://doi.org/10.1016/j.ceramint.2021.05.076
[29]  Suematsu, K., Shin, Y., Hua, Z., et al. (2014) Nanoparticle Cluster Gas Sensor: Controlled Clustering of SnO2 Nanoparticles for Highly Sensitive Toluene Detection. ACS Ap-plied Materials & Interfaces, 6, 5319-5326.
https://doi.org/10.1021/am500944a
[30]  Li, G.J., Fan, Y., Hu, Q.M., et al. (2022) Morphology and Size Effect of Pd Nanocrystals on Formaldehyde and Hydrogen Sensing Performance of SnO2 Based Gas Sensor. Journal of Alloys and Compounds, 906, Article ID: 163765.
https://doi.org/10.1016/j.jallcom.2022.163765
[31]  Wang, F.P., Hu, K.L., Liu, H.C., et al. (2020) Low Tem-perature and Fast Response Hydrogen Gas Sensor with Pd Coated SnO2 Nanofiber Rods. International Journal of Hydrogen Energy, 45, 7234-7242.
https://doi.org/10.1016/j.ijhydene.2019.12.152
[32]  Kim, B.Y., Cho, J.S., Yoon, J.W., et al. (2016) Extremely Sensitive Ethanol Sensor Using Pt-Doped SnO2 Hollow Nanospheres Prepared by Kirkendall Diffusion. Sensors and Actuators B: Chemical, 234, 353-360.
https://doi.org/10.1016/j.snb.2016.05.002
[33]  Kang, J.G., Park, J.S. and Lee, H.J. (2017) Pt-Doped SnO2 Thin Film Based Micro Gas Sensors with High Selectivity to Toluene and HCHO. Sensors and Actuators B: Chemical, 248, 1011-1016.
https://doi.org/10.1016/j.snb.2017.03.010
[34]  Quan, W.J., Hu, X.F., Min, X.J., et al. (2020) A Highly Sensitive and Selective ppb-Level Acetone Sensor Based on a Pt-Doped 3D Porous SnO2 Hierarchical Structure. Sensors, 20, 1150.
https://doi.org/10.3390/s20041150
[35]  Nguyen, X.T., Nguyen, V.D., Nguyen, V.T., et al. (2020) Effective Monitoring and Classification of Hydrogen and Ammonia Gases with a Bilayer Pt/SnO2 Thin Film Sensor. International Journal of Hydrogen Energy, 45, 2418-2428.
https://doi.org/10.1016/j.ijhydene.2019.11.072
[36]  Meng, X.N., Bi, M.S. and Xiao, Q.P. (2022) Rapid Re-sponse Hydrogen Sensor Based on Pd@Pt/SnO2 Hybrids at Near-Ambient Temperature. Sensors and Actuators B: Chemical, 159, Article ID: 131612.
https://doi.org/10.1016/j.snb.2022.132406
[37]  Shaposhnik, A.V., Moskalev, P.V., Zviagin, A.A., et al. (2021) Selective Determination of Hydrogen Sulfide Using SnO2-Ag Sensor Working in Non-Stationary Temperature Re-gime. ChemoSensors, 9, 203.
https://doi.org/10.3390/chemosensors9080203
[38]  Xu, X.L., Chen, Y., Zhang, G.H., et al. (2017) Highly Sensitive VOCs-Acetone Sensor Based on Ag-Decorated SnO2 Hollow Nanofibers. Journal of Alloys and Com-pounds, 703, 572-579.
https://doi.org/10.1016/j.jallcom.2017.01.348
[39]  Liu, C., Kuang, Q., Xie, Z.X., et al. (2015) The Effect of Noble Metal (Au, Pd and Pt) Nanoparticles on the Gas Sensing Performance of SnO2-Based Sensors: A Case Study on the {221} High-Index Faceted SnO2 Octahedra. CrystEngComm, 17, 6308-6313.
https://doi.org/10.1039/C5CE01162K
[40]  Liu, D., Pan, J.L., Tang, J.H., et al. (2019) Ag Decorated SnO2 Nanoparticles to Enhance Formaldehyde Sensing Properties. Journal of Physics and Chemistry of Solids, 124, 36-43.
https://doi.org/10.1016/j.jpcs.2018.08.028
[41]  Feng, B.X., Feng, Y.Y., Qin, J., et al. (2021) Self-Template Synthesis of Spherical Mesoporous Tin Dioxide from Tin-Polyphenol-Formaldehyde Polymers for Conductometric Ethanol Gas Sensing. Sensors and Actutors B: Chemical, 341, Article ID: 129965.
https://doi.org/10.1016/j.snb.2021.129965
[42]  Yao, L.J., Li, Y.X., Ran, Y., et al. (2020) Construction of Novel Pd-SnO2 Composite Nanoporous Structure as a High-Response Sensor for Methane Gas. Journal of Alloys and Compounds, 826, Article ID: 154063.
https://doi.org/10.1016/j.jallcom.2020.154063
[43]  Fedorenko, G., Oleksenko, L., Maksymovych, N., et al. (2017) Semiconductor Gas Sensors Based on Pd/SnO2 Nanomaterials for Methane Detection in Air. Nanoscale Research Letters, 12, 309.
https://doi.org/10.1186/s11671-017-2102-0
[44]  Ayesh, A.I., Mahmoud, S.T., Ahmad, S.J., et al. (2014) Novel Hydrogen Gas Sensor Based on Pd and SnO2 Nanoclusters. Materials Letters, 128, 354-357.
https://doi.org/10.1016/j.matlet.2014.04.173
[45]  Liu, X., Chen, N., Han, B.Q., et al. (2015) Nanoparticle Cluster Gas Sensor: Pt Activated SnO2 Nanoparticles for NH3 Detection with Ultrahigh Sensitivity. Nanoscale, 7, 14872-14880.
https://doi.org/10.1039/C5NR03585F
[46]  Sun, L., Wang, B. and Wang, Y.D. (2020) High-Temperature Gas Sensor Based on Novel Pt Single Atoms@SnO2 Nanorods@SiC Nanosheets Mul-ti-Heterojunctions. ACS Applied Materials & Interfaces, 12, 21808-21817.
https://doi.org/10.1021/acsami.0c02160
[47]  Shin, H., Jung, W.G., Kim, D.H., et al. (2020) Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO2 Heterojunction Trapping. ACS Ap-plied Materials & Interfaces, 14, 11394-11405.
https://doi.org/10.1021/acsnano.0c03687
[48]  Hu, Q.H., Liu, S.T. and Lian, Y.F. (2014) Sensors for Carbon Monoxide Based on Pd/SnO2/CNT Nanocomposites. Physica Status Solidi A: Applications and Materials Science, 211, 2729-2734.
https://doi.org/10.1002/pssa.201431392
[49]  Wang, Y., Tong, W.G. and Han, N. (2020) Co-Sputtered Pd/SnO2:NiO Heterostructured Sensing Films for MEMS-Based Ethanol Sensors. Materials Letters, 273, Article ID: 127924.
https://doi.org/10.1016/j.matlet.2020.127924
[50]  Chen, Z.H., Hu, K.Y., Yang, P.Y., et al. (2019) Hydrogen Sensors Based on Pt-Decorated SnO2 Nanorods with Fast and Sensitive Room-Temperature Sensing Performance. Journal of Alloys and Compounds, 811, Article ID: 152068.
https://doi.org/10.1016/j.jallcom.2019.152086
[51]  Kien, N., Chu, M.H., Trinh, M.N., et al. (2017) Low-Temperature Prototype Hydrogen Sensors Using Pd-Decorated SnO2 Nanowires for Exhaled Breath Applica-tions. Sensors and Actuators B: Chemical, 253, 156-163.
https://doi.org/10.1016/j.snb.2017.06.141
[52]  Su, Y., Chen, P., Wang, P.J., et al. (2019) Pd-Loaded SnO2 Hierarchical Nanospheres for a High Dynamic Range H2S Micro Sensor. Rsc Advances, 9, 5987-5994.
https://doi.org/10.1039/C8RA09156K
[53]  Yang, L.P., Wang, Z., Zhou, X.Y., et al. (2018) Synthesis of Pd-Loaded Mesoporous SnO2 Hollow Spheres for Highly Sensitive and Stable Methane Gas Sensors. Rsc Advances, 8, 24268-24275.
https://doi.org/10.1039/C8RA03242D
[54]  Wang, Q.J., Li, X., Liu, F.M., et al. (2016) The Enhanced CO Gas Sensing Performance of Pd/SnO2 Hollow Sphere Sensors under Hydrothermal Conditions. Rsc Advances, 6, 80455-80461.
https://doi.org/10.1039/C6RA15765C
[55]  Liu, Y.L., Huang, J., Yang, J.D., et al. (2017) Pt Nanoparticles Functionalized 3D SnO2 Nanoflowers for Gas Sensor Application. Solid-State Electronics, 130, 20-27.
https://doi.org/10.1016/j.sse.2017.01.005
[56]  Sun, Y.P., Zhao, Y.F., Sun, H., et al. (2020) Syn-thesis and Room-Temperature H2S Sensing of Pt Nanoparticle Functionalized SnO2 Mesoporous Nanoflowers. Journal of Alloys and Compounds, 842, Article ID: 155813.
https://doi.org/10.1016/j.jallcom.2020.155813
[57]  Yoon, J.W., Hong, Y.J., Kang, Y.C., et al. (2014) High Performance Chemiresistive H2S Sensors Using Ag-Loaded SnO2 Yolk-Shell Nanostructures. Rsc Advances, 4, 16067-16074.
https://doi.org/10.1039/C4RA01364F
[58]  Su, P.G. and Yang, L.Y. (2016) NH3 Gas Sensor Based on Pd/SnO2/RGO Ternary Composite Operated at Room Temperature. Sensors and Actuators B: Chemical, 223, 202-208.
https://doi.org/10.1016/j.snb.2015.09.091
[59]  Wang, C., Guan, J., Tian, F., et al. (2015) Preparation of Nano-Silver by Pho-to-Reduction Method Using Sodium Alginate. Materials Review, 29, 36-39.
[60]  Yang, B.X., Zhang, Z., Tian, C., et al. (2020) Selective Detection of Methane by HZSM-5 Zeolite/Pd-SnO2 Gas Sensors. Sensors and Actuators B: Chemical, 321, Article ID: 128567.
https://doi.org/10.1016/j.snb.2020.128567

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133