全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单细胞转录组测序技术在皮肤恶性黑色素瘤中的研究进展
Research Progress of Single Cell Transcriptome Sequencing Technology in Cutaneous Malignant Melanoma

DOI: 10.12677/HJBM.2023.132023, PP. 199-210

Keywords: 黑色素瘤,单细胞测序,异质性,肿瘤微环境,耐药性
Melanoma
, Single Cell Sequencing, Heterogeneity, Tumor Microenvironment, Drug Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

皮肤恶性黑色素瘤是恶性黑色素瘤的一种常见类型,具有极强的转移性和侵袭性,同时具有高突变负荷、肿瘤间和肿瘤内遗传异质性以及复杂的肿瘤微环境。黑色素瘤潜在机制的深度研究对于理解肿瘤进展和对治疗的反应至关重要。本文总结了单细胞转录组测序技术在黑色素瘤研究中的应用,从构建皮肤黑色素瘤的基因表达图谱、表征肿瘤间和肿瘤内的异质性和探究肿瘤微环境等方面深度剖析其在皮肤恶性黑色素瘤中的研究进展。并且介绍了目前常用的单细胞转录组数据库及其特点。最后,本文介绍了可与单细胞转录组测序技术结合应用的空间转录组技术,作为当下的研究热点,空间转录组技术与单细胞测序技术结合应用可从时间和空间两个维度重塑肿瘤微环境,为深入了解肿瘤提供了可以继续扩展的框架。
Cutaneous malignant melanoma is a common type of malignant melanoma, which has strong metastatic and invasive, high mutation load, genetic heterogeneity between and within tumors and complex tumor microenvironment. In-depth study of the underlying mechanisms of melanoma is essential for understanding tumor progression and response to treatment. This paper summarizes the application of single cell transcriptome sequencing technology in tumor research, and deeply analyzes its research progress in cutaneous malignant melanoma from the aspects of constructing gene expression map of cutaneous melanoma, characterizing heterogeneity between and within tumors, and exploring tumor microenvironment. The common single cell transcriptome databases and their characteristics are also introduced. Finally, this paper introduces the spatial transcriptome technology which can be combined with single cell transcriptome sequencing technology. As a current research hotspot, the combination of spatial transcriptome technology and single cell sequencing technology can reshape the tumor microenvironment from two dimensions of time and space, and provide a framework for further understanding of tumors.

References

[1]  Mitra, S. (2020) Exploring the Molecular Landscape of Cutaneous Melanoma. Ph.D. Thesis, Lund University, Lund.
[2]  Lo, J.A. and Fisher, D.E. (2014) The Melanoma Revolution: From UV Carcinogenesis to a New Era in Therapeutics. Science, 346, 945-949.
https://doi.org/10.1126/science.1253735
[3]  Schadendorf, D., van Akkooi, A.C.J., Berking, C., Griewank, K.G., Gutzmer, R., Hauschild, A., Stang, A., Roesch, A. and Ugurel, S. (2018) Melanoma. The Lancet, 392, 971-984.
https://doi.org/10.1016/S0140-6736(18)31559-9
[4]  Ozretic, P., Hanzic, N., Proust, B., Sabol, M., Trnski, D., Radic, M., Musani, V., Ciribilli, Y., Milas, I., Puljiz, Z., Bosnar, M.H., Levanat, S. and Slade, N. (2019) Expression Profiles of p53/p73, NME and GLI Families in Metastatic Melanoma Tissue and Cell Lines. Scientific Reports, 9, 12470.
https://doi.org/10.1038/s41598-019-48882-y
[5]  Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J. and Siegel, R.L. (2022) Cancer Treatment and Survivorship Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 409-436.
https://doi.org/10.3322/caac.21731
[6]  Sun, L., Guan, Z., Wei, S., Tan, R., Li, P. and Yan, L. (2019) Identification of Long Non-Coding and Messenger RNAs Differentially Expressed Between Primary and Metastatic Melanoma. Frontiers in Genetics, 10, 292.
https://doi.org/10.3389/fgene.2019.00292
[7]  Trujillo, J.A., Sweis, R.F., Bao, R.Y. and Luke, J.J. (2018) T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. Cancer Immunology Research, 6, 990-1000.
https://doi.org/10.1158/2326-6066.CIR-18-0277
[8]  Azimi, F., Scolyer, R.A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S.W., Saw, R.P. and Thompson, J.F. (2012) Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 30, 2678-2683.
https://doi.org/10.1200/JCO.2011.37.8539
[9]  Ren, X., Zhang, L., Zhang, Y., Li, Z., Siemers, N. and Zhang, Z. (2021) Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment. Annual Review of Immunology, 39, 583-609.
https://doi.org/10.1146/annurev-immunol-110519-071134
[10]  Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K. and Surani, M.A. (2009) mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nature Methods, 6, 377-382.
https://doi.org/10.1038/nmeth.1315
[11]  操利超, 巴颖, 张核子. 单细胞测序方法研究进展[J]. 生物信息学, 2022, 20(2): 91-99.
[12]  刘强, 方仪, 王靖. 单细胞测序技术在乳腺癌研究中的应用进展[J]. 中国癌症杂志, 2022, 32(7): 635-642.
[13]  Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Experimental & Molecular Medicine, 50, 1-14.
https://doi.org/10.1038/s12276-018-0071-8
[14]  Greenfield, E.A. (2019) Single-Cell Cloning of Hybridoma Cells by Limiting Dilution. Cold Spring Harbor Protocols, 2019, 726-728.
https://doi.org/10.1101/pdb.prot103192
[15]  Xu, W.H. (2018) Microinjection and Micromanipulation: A Historical Perspective. Methods in Molecular Biology (Clifton, N.J.), 1874, 1-16.
https://doi.org/10.1007/978-1-4939-8831-0_1
[16]  Pan, J. and Wan, J. (2020) Methodological Comparison of FACS and MACS Isolation of Enriched Microglia and Astrocytes from Mouse Brain. Journal of Immunological Methods, 486, Article ID: 112834.
https://doi.org/10.1016/j.jim.2020.112834
[17]  Guneykaya, D., Ivanov, A., Hernandez, D.P., et al. (2018) Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Reports, 24, 2773-2783.e6.
https://doi.org/10.1016/j.celrep.2018.08.001
[18]  Mickler, E.A., Zhou, H.X., Phang, T.L., et al. (2021) Low-Coverage Whole Genome Sequencing Using Laser Capture Microscopy with Combined Digital Droplet PCR: An Effective Tool to Study Copy Number and Kras Mutations in Early Lung Adenocarcinoma Development. International Journal of Molecular Sciences, 22, 12034.
https://doi.org/10.3390/ijms222112034
[19]  Bowman, E.K. and Alper, H.S. (2020) Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends in Biotechnology, 38, 701-714.
https://doi.org/10.1016/j.tibtech.2019.11.002
[20]  Picelli, S., Bj?rklund, ?.K., Faridani, O.R., Sagasser, S., Winberg, G. and Sandberg, R. (2013) Smart-seq2 for Sensitive Full-Length Transcriptome Profiling in Single Cells. Nature Methods, 10, 1096-1098.
https://doi.org/10.1038/nmeth.2639
[21]  Picelli, S., Faridani, O.R., Bj?rklund, ?.K., Winberg, G., Sagasser, S. and Sandberg, R. (2014) Full-Length RNA-seq from Single Cells Using Smart-seq2. Nature Protocols, 9, 171-181.
https://doi.org/10.1038/nprot.2014.006
[22]  Hashimshony, T., Senderovich, N., Avital, G., et al. (2016) CEL-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-Seq. Genome Biology, 17, 77.
https://doi.org/10.1186/s13059-016-0938-8
[23]  Macosko, E.Z., Basu, A., Satija, R., et al. (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 161, 1202-1214.
https://doi.org/10.1016/j.cell.2015.05.002
[24]  Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A. and Amit, I. (2014) Massively Parallel Single-Cell RNA-seq for Marker-Free Decomposition of Tissues into Cell Types. Science, 343, 776-779.
https://doi.org/10.1126/science.1247651
[25]  Zhang, Q.M., He, Y., Luo, N., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20.
https://doi.org/10.1016/j.cell.2019.10.003
[26]  Jeon, S.A., Park, J.L., Park, S.-J., Kim, J.H., Goh, S.-H., Han, J.-Y. and Kim, S.-Y. (2021) Comparison between MGI and Illumina Sequencing Platforms for Whole Genome Sequencing. Genes & Genomics, 43, 713-724.
https://doi.org/10.1007/s13258-021-01096-x
[27]  Sandoval-Velasco, M., Rodríguez, J.A., Perez Estrada, C., Zhang, G.J., Lieberman Aiden, E., Marti-Renom, M.A., Gilbert, M., Thomas, P. and Smith, O. (2020) Hi-C Chromosome Conformation Capture Sequencing of Avian Genomes Using the BGISEQ-500 Platform. Giga Science, 9, giaa087.
https://doi.org/10.1093/gigascience/giaa087
[28]  Yin, Y.X., Butler, C. and Zhang, Q.H. (2021) Challenges in the Application of NGS in the Clinical Laboratory. Human Immunology, 82, 812-819.
https://doi.org/10.1016/j.humimm.2021.03.011
[29]  Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nature Biotechnology, 36, 411-420.
https://doi.org/10.1038/nbt.4096
[30]  McCarthy, D.J., Campbell, K.R., Lun, A.T.L. and Wills, Q.F. (2017) Scater: Pre-Processing, Quality Control, Normalization and Visualization of Single-Cell RNA-seq Data in R. Bioinformatics, 33, 1179-1186.
https://doi.org/10.1093/bioinformatics/btw777
[31]  Lun, A.T., McCarthy, D.J. and Marioni, J.C. (2016) A Step-by-Step Workflow for Low-Level Analysis of Single-Cell RNA-seq Data with Bioconductor. F1000research, 5, 2122.
https://doi.org/10.12688/f1000research.9501.2
[32]  Cao, J.Y., Spielmann, M., Qiu, X.J., Huang, X.F., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., Trapnell, C. and Shendure, J. (2019) The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature, 566, 496-502.
https://doi.org/10.1038/s41586-019-0969-x
[33]  Ji, Z.C. and Ji, H.K. (2016) TSCAN: Pseudo-Time Reconstruction and Evaluation in Single-Cell RNA-seq Analysis. Nucleic Acids Research, 44, e117-e117.
https://doi.org/10.1093/nar/gkw430
[34]  Efremova, M., Vento-Tormo, M., Teichmann, S.A. and Vento-Tormo, R. (2020) CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression of Multi-Subunit Ligand-Receptor Complexes. Nature Protocols, 15, 1484-1506.
https://doi.org/10.1038/s41596-020-0292-x
[35]  Jin, S.Q., Guerrero-Juarez, C.F., Zhang, L.H., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M.V. and Nie, Q. (2021) Inference and Analysis of Cell-Cell Communication Using CellChat. Nature Communications, 12, 1088.
https://doi.org/10.1038/s41467-021-21246-9
[36]  Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H.N., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.R., Cohen, O., Shah, P., Lu, D., Genshaft, A.S., Hughes, T.K., Ziegler, C.G., Kazer, S.W., Gaillard, A., Kolb, K.E., Villani, A.C., Johannessen, C.M., Andreev, A.Y., Van Allen, E.M., Bertagnolli, M., Sorger, P.K., Sullivan, R.J., Flaherty, K.T., Frederick, D.T., Jane-Valbuena, J., Yoon, C.H., Rozenblatt-Rosen, O., Shalek, A.K., Regev, A. and Garraway, L.A. (2016) Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-seq. Science, 352, 189-196.
https://doi.org/10.1126/science.aad0501
[37]  Kunz, M., L?ffler-Wirth, H., Dannemann, M., Willscher, E., Doose, G., Kelso, J., Kottek, T., Nickel, B., Hopp, L., Landsberg, J., Hoffmann, S., Tüting, T., Zigrino, P., Mauch, C., Utikal, J., Ziemer, M., Schulze, H.-J., H?lzel, M., Roesch, A., Kneitz, S., Meierjohann, S., Bosserhoff, A., Binder, H. and Schartl, M. (2018) RNA-seq Analysis Identifies Different Transcriptomic Types and Developmental Trajectories of Primary Melanomas. Oncogene, 37, 6136-6151.
https://doi.org/10.1038/s41388-018-0385-y
[38]  Karras, P., Bordeu, I., Pozniak, J., Nowosad, A., Pazzi, C., Van Raemdonck, N., Landeloos, E., Van Herck, Y., Pedri, D., Bervoets, G., Makhzami, S., Khoo, J.H., Pavie, B., Lamote, J., Marin-Bejar, O., Dewaele, M., Liang, H., Zhang, X., Hua, Y., Wouters, J., Browaeys, R., Bergers, G., Saeys, Y., Bosisio, F., van den Oord, J., Lambrechts, D., Rustgi, A.K., Bechter, O., Blanpain, C., Simons, B.D., Rambow, F. and Marine, J.C. (2022) A Cellular Hierarchy in Melanoma Uncouples Growth and Metastasis. Nature, 610, 190-198.
https://doi.org/10.1038/s41586-022-05242-7
[39]  Goding, C.R. and Arnheiter, H. (2019) MITF—The First 25 Years. Genes & Development, 33, 983-1007.
https://doi.org/10.1101/gad.324657.119
[40]  McGranahan, N. and Swanton, C. (2017) Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell, 168, 613-628.
https://doi.org/10.1016/j.cell.2017.01.018
[41]  Arozarena, I. and Wellbrock, C. (2019) Phenotype Plasticity as Enabler of Melanoma Progression and Therapy Resistance. Nature Reviews Cancer, 19, 377-391.
https://doi.org/10.1038/s41568-019-0154-4
[42]  Deng, W., Ma, Y., Su, Z., Liu, Y., Liang, P., Huang, C., Liu, X., Shao, J., Zhang, Y., Zhang, K., Chen, J. and Li, R. (2021) Single-Cell RNA-Sequencing Analyses Identify Heterogeneity of CD8(+) T Cell Subpopulations and Novel Therapy Targets in Melanoma. Molecular Therapy-Oncolytics, 20, 105-118.
https://doi.org/10.1016/j.omto.2020.12.003
[43]  Bosisio, F.M., Antoranz, A., van Herck, Y., Bolognesi, M.M., Marcelis, L., Chinello, C., Wouters, J., Magni, F., Alexopoulos, L., Stas, M., Boecxstaens, V., Bechter, O., Cattoretti, G. and van den Oord, J. (2020) Functional Heterogeneity of Lymphocytic Patterns in Primary Melanoma Dissected through Single-Cell Multiplexing. eLife, 9, e53008.
https://doi.org/10.7554/eLife.53008
[44]  Novotny, J., Strnadová, K., Dvo?ánková, B., Kocourková, ?., Jak?a, R., Dundr, P., Pa?es, V., Smetana, K., Kolá?, M. and Lacina, L. (2020) Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers, 12, 3324.
https://doi.org/10.3390/cancers12113324
[45]  Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D., Diehn, M. and Alizadeh, A.A. (2019) Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry. Nature Biotechnology, 37, 773-782.
https://doi.org/10.1038/s41587-019-0114-2
[46]  Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982.
https://doi.org/10.1200/JCO.2014.59.4358
[47]  Redman, J.M., Gibney, G.T. and Atkins, M.B. (2016) Advances in Immunotherapy for Melanoma. BMC Medicine, 14, 20.
https://doi.org/10.1186/s12916-016-0571-0
[48]  Cabello-Aguilar, S., Alame, M., Kon-Sun-Tack, F., Fau, C., Lacroix, M. and Colinge, J. (2020) Single Cell Signal R: Inference of Intercellular Networks from Single-Cell Transcriptomics. Nucleic Acids Research, 48, e55.
https://doi.org/10.1093/nar/gkaa183
[49]  Wang, Y.X., et al. (2019) iTALK: An R Package to Characterize and Illustrate Intercellular Communication.
https://doi.org/10.1101/507871
[50]  Browaeys, R., Saelens, W. and Saeys, Y. (2020) NicheNet: Modeling Intercellular Communication by Linking Ligands to Target Genes. Nature Methods, 17, 159-162.
https://doi.org/10.1038/s41592-019-0667-5
[51]  Liu, Y.T., Shou, Y.H., Zhu, R.H., et al. (2022) Construction and Validation of a Ferroptosis-Related Prognostic Signature for Melanoma Based on Single-Cell RNA Sequencing. Frontiers in Cell and Developmental Biology, 10, Article ID: 818457.
https://doi.org/10.3389/fcell.2022.818457
[52]  Wang, F., Zheng, A.F., Zhang, D.L., et al. (2022) Molecular Profiling of Core Immune-Escape Genes Highlights LCK as an Immune-Related Prognostic Biomarker in Melanoma. Frontiers in Immunology, 13, Article ID: 1024931.
https://doi.org/10.3389/fimmu.2022.1024931
[53]  Hayward, N.K., Wilmott, J.S., Waddell, N., Johansson, P.A., Field, M.A., Nones, K., et al. (2017) Whole-Genome Landscapes of Major Melanoma Subtypes. Nature, 545, 175-180.
https://doi.org/10.1038/nature22071
[54]  Randic, T., Kozar, I., Margue, C., Utikal, J. and Kreis, S. (2021) NRAS Mutant Melanoma: Towards Better Therapies. Cancer Treatment Reviews, 99, Article ID: 102238.
https://doi.org/10.1016/j.ctrv.2021.102238
[55]  Loeffler-Wirth, H., Binder, H., Willscher, E., Gerber, T. and Kunz, M. (2018) Pseudotime Dynamics in Melanoma Single-Cell Transcriptomes Reveals Different Mechanisms of Tumor Progression. Biology, 7, 23.
https://doi.org/10.3390/biology7020023
[56]  Schmidt, M., Sünke M., Lena, L.-W., et al. (2021) Single-Cell Trajectories of Melanoma Cell Resistance to Targeted Treatment. Cancer Biology and Medicine, 19, 56-73.
https://doi.org/10.20892/j.issn.2095-3941.2021.0267
[57]  Pires Da Silva, I., Ahmed, T., Reijers, I.L.M., Weppler, A.M., et al. (2021) Ipilimumab Alone or Ipilimumab plus Anti-PD-1 Therapy in Patients with Metastatic Melanoma Resistant to Anti-PD-(L)1 Monotherapy: A Multicentre, Retrospective, Cohort Study. The Lancet Oncology, 22, 836-847.
https://doi.org/10.1016/S1470-2045(21)00097-8
[58]  Hossain, S.M. and Eccles, M.R. (2023) Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. International Journal of Molecular Sciences, 24, 1601.
https://doi.org/10.3390/ijms24021601
[59]  Cao, Y., Zhu, J.J., Han, G.C., Jia, P.L. and Zhao, Z.M. (2017) scRNASeqDB: A Database for Gene Expression Profiling in Human Single Cell by RNA-seq.
https://doi.org/10.1101/104810
[60]  Ner-Gaon, H., Melchior, A., Golan, N., Ben-Haim, Y. and Shay, T. (2017) JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets. The Journal of Immunology, 198, 3375-3379.
https://doi.org/10.4049/jimmunol.1700272
[61]  Yuan, H.T., Yan, M., Zhang, G.X., Liu, W., Deng, C.Y., Liao, G.M., et al. (2019) CancerSEA: A Cancer Single-Cell State Atlas. Nucleic Acids Research, 47, D900-D908.
https://doi.org/10.1093/nar/gky939
[62]  Wang, Z.S., Feng, X.K. and Li, S.C. (2019) SCDevDB: A Database for Insights into Single-Cell Gene Expression Profiles during Human Developmental Processes. Frontiers in Genetics, 10, 903.
https://doi.org/10.3389/fgene.2019.00903
[63]  Mohanraj, S., Díaz-Mejía, J.J., Pham, M.D., Elrick, H., Husi?, M., Rashid, S., et al. (2020) Crescent: Cancer Single Cell Expression Toolkit. Nucleic Acids Research, 48, W372-W379.
https://doi.org/10.1093/nar/gkaa437
[64]  Li, P.-H., Kong, X.-Y., He, Y.-Z., Liu, Y., Peng, X., Li, Z.-H., Xu, H., Luo, H. and Park, J. (2022) Recent Developments in Application of Single-Cell RNA Sequencing in the Tumour Immune Microenvironment and Cancer Therapy. Military Medical Research, 9, 52.
https://doi.org/10.1186/s40779-022-00414-y
[65]  Biermann, J., Melms, J.C., Amin, A.D., Wang, Y., Caprio, L.A., Karz, A., Tagore, S., Barrera, I., Ibarra-Arellano, M.A., Andreatta, M., Fullerton, B.T., Gretarsson, K.H., Sahu, V., Mangipudy, V.S., Nguyen, T.T.T., Nair, A., Rogava, M., Ho, P., Koch, P.D., Banu, M., Humala, N., Mahajan, A., Walsh, Z.H., Shah, S.B., Vaccaro, D.H., Caldwell, B., Mu, M., Wunnemann, F., Chazotte, M., Berhe, S., Luoma, A.M., Driver, J., Ingham, M., Khan, S.A., Rapisuwon, S., Slingluff, C.L., Eigentler, T., Rocken, M., Carvajal, R., Atkins, M.B., Davies, M.A., Agustinus, A., Bakhoum, S.F., Azizi, E., Siegelin, M., Lu, C., Carmona, S.J., Hibshoosh, H., Ribas, A., Canoll, P., Bruce, J.N., Bi, W.L., Agrawal, P., Schapiro, D., Hernando, E., Macosko, E.Z., Chen, F., Schwartz, G.K. and Izar, B. (2022) Dissecting the Treatment-Naive Ecosystem of Human Melanoma Brain Metastasis. Cell, 185, 2591-2608.e30.
https://doi.org/10.1016/j.cell.2022.06.007
[66]  Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. and Lundeberg, J. (2018) Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Research, 78, 5970-5979.
https://doi.org/10.1158/0008-5472.CAN-18-0747
[67]  Barrett, T., Suzek, T. O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E., Fujibuchi, W. and Edgar, R. (2005) NCBI GEO: Mining Millions of Expression Profiles—Database and Tools. Nucleic Acids Research, 33, D562-D566.
https://doi.org/10.1093/nar/gki022
[68]  Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., Clevers, H., Deplancke, B., Dunham, I., Eberwine, J., Eils, R., Enard, W., Farmer, A., Fugger, L., Gottgens, B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P., Kriegstein, A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Marioni, J.C., Merad, M., Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Pe'Er, D., Phillipakis, A., Ponting, C.P., Quake, S., Reik, W., Rozenblatt-Rosen, O., Sanes, J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin, J.W., Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., van Oudenaarden, A., Wagner, A., Watt, F., Weissman, J., Wold, B., Xavier, R. and Yosef, N. (2017) The Human Cell Atlas. eLife, 6, e27041.
https://doi.org/10.7554/eLife.27041
[69]  Papatheodorou, I., Moreno, P., Manning, J., Fuentes, A.M., George, N., Fexova, S., Fonseca, N.A., Fullgrabe, A., Green, M., Huang, N., Huerta, L., Iqbal, H., Jianu, M., Mohammed, S., Zhao, L., Jarnuczak, A.F., Jupp, S., Marioni, J., Meyer, K., Petryszak, R., Prada, M.C.A., Talavera-Lopez, C., Teichmann, S., Vizcaino, J.A. and Brazma, A. (2020) Expression Atlas Update: From Tissues to Single Cells. Nucleic Acids Research, 48, D77-D83.
https://doi.org/10.1093/nar/gkz947
[70]  Franzen, O., Gan, L.M. and Bjorkegren, J.L.M. (2019) PanglaoDB: A Web Server for Exploration of Mouse and Human Single-Cell RNA Sequencing Data. Database: The Journal of Biological Databases and Curation, 2019, baz046.
https://doi.org/10.1093/database/baz046
[71]  Christensen, E., Naidas, A., Husic, M. and Shooshtari, P. (2020) TMExplorer: A Tumour Microenvironment Single-Cell RNAseq Database and Search Tool. PLOS ONE, 17, e0272302.
https://doi.org/10.1101/2020.10.31.362988

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133