|
细菌外膜囊泡调节免疫细胞功能活动的研究进展
|
Abstract:
外膜囊泡(OMV)是一种来源于革兰氏阴性菌的纳米级大小的球形蛋白脂质体。OMVS可以运输多种化学成分,包括脂类、脂多糖、膜包埋的相关蛋白和小分子、肽聚糖和核酸,特别是粘附素和毒素等毒力因子通常在OMV中富集。OMVs在细菌与宿主细胞间沟通、微生物毒力和调节细菌群落内的微生物相互作用以及调节宿主免疫反应方面发挥着不同的作用。它们在细菌培养和感染过程中无处不在地产生,现在被认为在宿主与细菌的相互作用中发挥着关键作用。在这里,我们着重讨论了OMVs对宿主免疫细胞的影响作用,重点介绍它们对各类免疫细胞所做出的免疫功能调节的研究现状。
The outer membrane vesicles (OMV) is a nanoscale-sized spherical protein liposome derived from gram-negative bacteria. OMVS can transport a variety of chemical components, including lipids, lipopolysaccharides, membrane embedded related proteins and small molecules, peptidmosaccharides, and nucleic acids, particularly adhesives and toxins, which are usually rich in OMV. OMVs play different roles in bacteria and host cell intervals, microbial toxicity and microbial interactions in the formation of bacterial communities and regulating the host immune response. They are everywhere in bacterial culture and infection, and they are now considered to play a key role in the interaction of the host and bacteria. Here, we focused on the effects of OMVs on host immune cells, focusing on the research status of immune function adjustment made by various types of immune cells.
[1] | Beveridge, T.J. (1999) Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. Journal of Bacteriology, 181, 4725-4733. https://doi.org/10.1128/JB.181.16.4725-4733.1999 |
[2] | 冯文艳, 张扣兴. 革兰阴性菌外膜囊泡的研究进展[J]. 中国抗生素杂志, 2019, 44(1): 32-39. |
[3] | 陈琪, 吴敏, 白宏震, 等. 细菌外膜囊泡纳米载体的制备及其免疫调节作用[J]. 浙江大学学报(医学版), 2017, 46(2): 118-126. |
[4] | 陈桥桥, 涂仕娟, 夏修文, 等. 细菌外膜囊泡发生机制及其影响因素的研究进展[J]. 右江民族医学院学报, 2019, 41(5): 572-574. |
[5] | Lee, J., Kim, O.Y. and Gho, Y.S. (2016) Proteomic Profiling of Gram-Negative Bacterial Outer Membrane Vesicles: Current Perspectives. PROTEOMICS—Clinical Applications, 10, 897-909. https://doi.org/10.1002/prca.201600032 |
[6] | Schwechheimer, C. and Kuehn, M. (2015) Outer-Membrane Vesicles from Gram-Negative Bacteria: Biogenesis and Functions. Nature Reviews Microbiology, 13, 605-619. https://doi.org/10.1038/nrmicro3525 |
[7] | Kaparakis-Liaskos, M. and Ferrero, R. (2015) Immune Modulation by Bacterial Outer Membrane Vesicles. Nature Reviews Immunology, 15, 375-387. https://doi.org/10.1038/nri3837 |
[8] | Jan, A.T. (2017) Outer Membrane Vesicles (OMVs) of Gram-Negative Bacteria: A Perspective Update. Frontiers in Microbiology, 8, Article 1053. https://doi.org/10.3389/fmicb.2017.01053 |
[9] | Kuehn, M.J. and Kesty, N.C. (2005) Bacterial Outer Membrane Vesicles and the Host-Pathogen Interaction. Genes & Development, 19, 2645-2655. https://doi.org/10.1101/gad.1299905 |
[10] | Nakao, R., Hasegawa, H., Ochiai, K., Takashiba, S., Ainai, A., Ohnishi, M., Watanabe, H. and Senpuku, H. (2011) Outer Membrane Vesicles of Porphyromonas gingivalis Elicit a Mucosal Immune Response. PLOS ONE, 6, e26163.
https://doi.org/10.1371/journal.pone.0026163 |
[11] | Grenier, D. and Mayrand, D. (1987) Functional Characterization of Extracellular Vesicles Produced by Bacteroides Gingivalis. Infection and Immunity, 55, 111-117. https://doi.org/10.1128/iai.55.1.111-117.1987 |
[12] | Haurat, M.F., Aduse-Opoku, J., Rangarajan, M., Dorobantu, L., Gray, M.R., Curtis, M.A. and Feldman, M.F. (2011) Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles. Journal of Biological Chemistry, 286, 1269-1276. https://doi.org/10.1074/jbc.M110.185744 |
[13] | Veith, P.D., Chen, Y.-Y., Gorasia, D.G., Chen, D., Glew, M.D., O’Brien-Simpson, N.M., Cecil, J.D., Holden, J.A. and Reynolds, E.C. (2014) Porphyromonas gingivalis Outer Membrane Vesicles Exclusively Contain Outer Membrane and Periplasmic Proteins and Carry a Cargo Enriched with Virulence Factors. Journal of Proteome Research, 13, 2420-2432. https://doi.org/10.1021/pr401227e |
[14] | Brown, L., Wolf, J.M., Prados-Rosales, R. and Casadevall, A. (2015) Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi. Nature Reviews Microbiology, 13, 620-630.
https://doi.org/10.1038/nrmicro3480 |
[15] | Orench-Rivera, N. and Kuehn, M.J. (2016) Environmentally Controlled Bacterial Vesicle-Mediated Export. Cellular Microbiology, 18, 1525-1536. https://doi.org/10.1111/cmi.12676 |
[16] | Gujrati, V., et al. (2014) Bioengineered Bacterial Outer Membrane Vesicles as Cell-Specific Drug-Delivery Vehicles for Cancer Therapy. ACS Nano, 8, 1525-1537. https://doi.org/10.1021/nn405724x |
[17] | Grandi, A., Tomasi, M., Zanella, I., et al. (2017) Synergistic Protective Activity of Tumor-Specific Epitopes Engineered in Bacterial Outer Membrane Vesicles. Frontiers in Oncology, 7, Article 253.
https://doi.org/10.3389/fonc.2017.00253 |
[18] | Tan, K., Li, R., Huang, X. and Liu, Q. (2018) Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants. Frontiers in Microbiology, 9, Article 783. https://doi.org/10.3389/fmicb.2018.00783 |
[19] | Wang, S., Huang, W., Li, K., et al. (2017) Engineered Outer Membrane Vesicle is Potent to Elicit HPV16E7-Specific Cellular Immunity in a Mouse Model of TC-1 Graft Tumor. International Journal of Nanomedicine, 12, 6813-6825.
https://doi.org/10.2147/IJN.S143264 |
[20] | Liu, Q., Tan, K., Yuan, J., et al. (2018) Flagellin-Deficient Outer Membrane Vesicles as Adjuvant Induce Cross-Protection of Salmonella Typhimurium Outer Membrane Proteins against Infection by Heterologous Salmonella Serotypes. International Journal of Medical Microbiology, 308, 796-802. https://doi.org/10.1016/j.ijmm.2018.06.001 |
[21] | Peer, D., Karp, J.M., Hong, S., et al. (2007) Nanocarriers as an Emerging Platform for Cancer Therapy. Nature Nanotechnology, 2, 751-760. https://doi.org/10.1038/nnano.2007.387 |
[22] | Hu, R., Lin, H., Li, J., Zhao, Y., Wang, M., Sun, X., Min, Y., Gao, Y. and Yang, M. (2020) Probiotic Escherichia coli Nissle 1917-Derived Outer Membrane Vesicles Enhance Immunomodulation and Antimicrobial Activity in Raw264.7 Macrophages. BMC Microbiology, 20, Article No. 268. https://doi.org/10.1186/s12866-020-01953-x |
[23] | Ernsting, M.J., Murakami, M., Roy, A. and Li, S.-D. (2013)Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles. Journal of Controlled Release, 172, 782-794.
https://doi.org/10.1016/j.jconrel.2013.09.013 |
[24] | Tahmasbi Rad, A., Chen, C.W., Aresh, W., et al. (2019) Combinational Effects of Active Targeting, Shape, and Enhanced Permeability and Retention for Cancer Theranostic Nanocarriers. ACS Applied Materials & Interfaces, 11, 10505-10519. https://doi.org/10.1021/acsami.8b21609 |
[25] | Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[26] | Berzofsky, J.A., Terabe, M., Trepel, J.B., et al. (2018) Cancer Vaccine Strategies: Translation from Mice to Human Clinical Trials. Cancer Immunology, Immunotherapy, 67, 1863-1869. https://doi.org/10.1007/s00262-017-2084-x |
[27] | da Silva, J.L., Dos Santos, A.L.S., Nunes, N.C.C., et al. (2019) Cancer Immunotherapy: The Art of Targeting the Tumor Immune Microenvironment. Cancer Chemotherapy and Pharmacology, 84, 227-240.
https://doi.org/10.1007/s00280-019-03894-3 |
[28] | Kesty, N.C. and Kuehn, M.J. (2004) Incorporation of Heterologous Outer Membrane and Periplasmic Proteins into Escherichia coli Outer Membrane Vesicles. Journal of Biological Chemistry, 279, 2069-2076.
https://doi.org/10.1074/jbc.M307628200 |
[29] | Fantappiè, L., Santis, M.D., Chiarot, E., et al. (2014) Antibody-Mediated Immunity Induced by Engineered Escherichia coli OMVs Carrying Heterologous Antigens in Their Lumen. Journal of Extracellular Vesicles, 3, Article ID: 24015. https://doi.org/10.3402/jev.v3.24015 |
[30] | Kim, O.Y., Park, H.T., Dinh, N.T.H., et al. (2017) Bacterial Outer Membrane Vesicles Suppress Tumor by Interferon-γ-Mediated Antitumor Response. Nature Communications, 8, Article No. 626.
https://doi.org/10.1038/s41467-017-00729-8 |
[31] | Banchereau, J. and Palucka, K. (2018) Cancer Vaccines on the Move. Nature Reviews Clinical Oncology, 15, 9-10.
https://doi.org/10.1038/nrclinonc.2017.149 |
[32] | Durant, L., Stentz, R., Noble, A., Brooks, J., Gicheva, N., Reddi, D., O’Connor, M.J., Hoyles, L., McCartney, A.L., Man, R., Pring, E.T., Dilke, S., Hendy, P., Segal, J.P., Lim, D.N.F., Misra, R., Hart, A.L., Arebi, N., Carding, S.R. and Knight, S.C. (2020) Bacteroides thetaiotaomicron-Derived Outer Membrane Vesicles Promote Regulatory Dendritic Cell Responses in Health but Not in Inflammatory Bowel Disease. Microbiome, 8, Article No. 88.
https://doi.org/10.1186/s40168-020-00868-z |
[33] | Bae, E.-H., Seo, S.H., Kim, C.-U., Jang, M.S., Song, M.-S., Lee, T.-Y., Jeong, Y.-J., Lee, M.-S., Park, J.-H., Lee, P., Kim, Y.S., Kim, S.-H. and Kim, D.-J. (2019) Bacterial Outer Membrane Vesicles Provide Broad-Spectrum Protection against Influenza Virus Infection via Recruitment and Activation of Macrophages. Journal of Innate Immunity, 11, 316-329. https://doi.org/10.1159/000494098 |