|
Material Sciences 2023
核壳结构Ta2O5@Ta3N5纳米花控制合成工艺研究
|
Abstract:
以TaCl5为钽源,采用水热–高温氮化法合成核壳结构Ta2O5@Ta3N5纳米花。首先,利用场发射扫描电子显微镜(SEM)测试评价样品形貌,研究溶剂种类、异丙醇用量、盐酸用量、水热时间等条件因素对样品形貌调控规律;异丙醇溶剂有利于促进棒状结构生成,当异丙醇用量为14 mL,浓盐酸用量为400 μL,经160℃水热4 h制得Ta2O5纳米花,组成纳米花的棒状结构直径约50 nm,长约200 nm。再利用高温氮化技术,在50 mL?min?1 NH3气流下,经850℃氮化3 h,Ta2O5纳米花经拓扑转换制得核壳结构Ta2O5@Ta3N5纳米花。XRD分析证实样品具有Ta2O5和Ta3N5双相结构,晶化度较高;HRTEM分析表明样品形成Ta2O5/Ta3N5;BET比表面积为21.9 m2?g?1。本文为进一步开展Ta2O5@Ta3N5基纳米材料的制备及应用性能研究奠定实验技术基础。
Ta2O5@Ta3N5 nanoflowers were synthesized by a combination of hydrothermal and high-tempe- rature nitridation method, using TaCl5 as the tantalum source. Based on the morphology evaluated by field emission scanning electron micros-copy (SEM), the preparation process of Ta2O5 nanoflowers was optimized by regulating process conditions including solvent type, amount of isopropanol, amount of hydrochloric acid, and hydrother-mal time. Isopropanol solvent is beneficial to promote the formation of rod-like structure. When the amount of isopropanol is 14 mL and the amount of concentrated hydrochloric acid is 400 μL, Ta2O5 nanoflowers are prepared by hydrothermal treatment at 160?C for 4 h. The rod-like structure of nanoflowers is about 50 nm in diameter and about 200 nm in length. Then, Ta2O5@Ta3N5 nanoflowers were prepared by topological transformation of Ta2O5 nanoflowers, using high-temperature nitriding technology, under 50 mL?min?1 NH3 gas flow, after nitriding at 850?C for 3 h. XRD analysis confirmed that the sample possessed both Ta2O5 and Ta3N5 phases with a high crystallization de-gree. HRTEM analysis indicated that the sample exhibited core-shell structure Ta2O5@Ta3N5. Its BET specific area was 21.9 m2?g?1. This work lays an experimental technical foundation for further research on preparation and application
[1] | Li, W., Cheng, F., Jin, L., Wu, Q. and Xie, K. (2021) Centimeter-Scale Porous Ta3N5 Single Crystal Monolith Enhances Photoelectrochemical Performance. The Journal of Physical Chemistry C, 125, 8098-8104.
https://doi.org/10.1021/acs.jpcc.1c01558 |
[2] | Jiang, H.Q., Li, X.S. and Zang, S.Y. (2021) Mixed Cobalt-Nitrides CoxN and Ta2N Bifunction-Modified Ta3N5 Nanosheets for Enhanced Photocatalytic Water-Splitting into Hydrogen. Journal of Alloys and Compounds, 854, 155328-155337.
https://doi.org/10.1016/j.jallcom.2020.155328 |
[3] | 张京. 六面体形Ta2O5@Ta3N5的熔盐辅助高温氮化控制合成及可见光解水析氢性能[J]. 材料科学, 2021, 11(4): 485-496. |
[4] | Pihosh, Y., Nandal, V., Minegishi, T., Katayama, M., Yamada, T., Seki, K., Sugiyama, M. and Domen, K. (2020) Development of a Core-Shell Heterojunction Ta3N5-Nanorods/BaTaO2N Photoanode for Solar Water Splitting. ACS Energy Letters, 5, 3492-2497. https://doi.org/10.1021/acsenergylett.0c00900 |
[5] | Ladj, R., Bitar, A., Eissa, M., Mugnier, Y., Dantec, R., Fessi, H. and Elaissari, A. (2013) Individual Inorganic Nanoparticles: Preparation, Functionalization and in Vitro Biomedical Di-agnostic Applications. Journal of Materials Chemistry B, 1, 1381-1396. https://doi.org/10.1039/c2tb00301e |
[6] | Ladj, R., Magouroux, T., Eissa, M., Dubled, M., Mugnier, Y., Dantec, R.L., Galez, C., Valour, J.P. and Elaissari, A. (2013) Aminodextran-Coated Potassium Niobate (KNbO3) Nanocrystals for Second Harmonic Bioimaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 131-137. https://doi.org/10.1016/j.colsurfa.2013.02.025 |
[7] | Nawaz, M., Mou, F.Z., Xu, L.L. and Guan, J.G. (2018) Effect of Solvents and Reaction Parameters on the Morphology of Ta2O5 and Photocatalytic Activity. Journal of Molecular Liq-uids, 269, 211-216.
https://doi.org/10.1016/j.molliq.2018.08.026 |
[8] | Gao, R., Zhou, S. and Chen, M. (2011) Facile Synthesis of Monodisperse Meso-Microporous Ta3N5 Hollow Spheres and Their Visible Light-Driven Photocatalytic Activity. Jour-nal of Materials Chemistry, 21, 17087-17090.
https://doi.org/10.1039/c1jm13756e |
[9] | Cui, X., Gong, Y.H. and Liu, Y.P. (2022) Synthesis of a Z-Scheme Ter-nary Photocatalyst (Ta3N5/Ag3PO4/AgBr) for the Enhanced Photocatalytic Degradation of Tetracycline under Visible Light. Journal of Physics and Chemistry of Solids, 170, 110962-110673. https://doi.org/10.1016/j.jpcs.2022.110962 |
[10] | Yuliati, L., Yang, J.H., Wang, X.C., Maeda, K., Takata, T., Anto-niettic, M. and Domen, K. (2010) Highly Active Tantalum(v) Nitride Nanoparticles Prepared from a Mesoporous Carbon Nitride Template for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Journal of Materials Chemistry, 20, 4295-4298.
https://doi.org/10.1039/c0jm00341g |
[11] | Shi, X.M., Ma, D.L., Ma, Y. and Hu, A.M. (2017) N-Doping Ta2O5 Nanoflowers with Strong Adsorption and Visible Light Photocatalytic Activity for Efficient Removal of Methylene Blue. Journal of Photochemistry and Photobiology A Chemistry, 332, 487-496. https://doi.org/10.1016/j.jphotochem.2016.09.014 |
[12] | Fukasawa, Y., Takanabe, K., Shimojima, A., Antonietti, M., Domen, K. and Okubo, T. (2011) Synthesis of Ordered Porous Graphitic-C3N4 and Regularly Arranged Ta3N5 Nanopar-ticles by Using Self-Assembled Silica Nanospheres as a Primary Template. Chemistry—An Asian Journal, 6, 103-109. https://doi.org/10.1002/asia.201000523 |
[13] | Zhang, W.L., Jiang H.Q., Zhang, W. and Zang, S.Y. (2020) Con-structing Rh-Rh3+ Modified Ta2O5@TaON@Ta3N5 with Special Double n-n Mutant Heterojunctions for Enhanced Pho-tocatalytic H2-Evolution. RSC Advances, 10, 29424-29431.
https://doi.org/10.1039/D0RA02214D |
[14] | Gordon, T.R., Cargnello, M., Paik, T., Mangolini, F., Weber, R.T., Fornasiero, P. and Murray, C.B. (2012) Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphol-ogy Oxygen Vacancy Concentration and Photocatalytic Activity. Journal of the American Chemical Society, 134, 6751-6761. https://doi.org/10.1021/ja300823a |
[15] | Jiang, H.Q., Feng, L. and Zhu, S.Y. (2022) Hydrous RuO2 and CoxNy Difunction-Modified Ta3N5@Ta2N Multi-Hetero- junction Nanoplates for Efficient Visible-Light-Driven Photo-catalytic Hydrogen Reduction. International Journal of Hydrogen Energy, 46, 39855-39867. https://doi.org/10.1016/j.ijhydene.2021.09.238 |