A2FeCoO6-δ (A = Ca or Sr) is synthesized by the solid-state synthesis method and their specific heat capacities are evaluated at 40˚C using a heat flow meter. The effect of the A-cation size on the specific heat capacity of these compounds is observed. The specific heat capacity of Sr2FeCoO6-δ is found to be the highest, and that of Ca2FeCoO6-δ is the lowest while CaSrFeCoO6-δ shows the intermediate value. The specific heat capacity decreases with the decrease of the average A-site ionic radius, demonstrating the relationship between heat capacity and A-site ionic radius. The relationship between specific heat capacity and molar mass is also confirmed as the δ value decreases or molar mass increases from Ca2FeCoO6-δ to CaSrFeCoO6-δ to Sr2FeCoO6-δ.
References
[1]
Leo, A., et al. (2006) Oxygen Permeation through Perovskite Membranes and the Improvement of Oxygen Flux by Surface Modification. Science and Technology of Advanced Materials, 7, 819-825. https://doi.org/10.1016/j.stam.2006.11.013
[2]
Kharton, V.V., et al. (1999) Perovskite-Type Oxides for High-Temperature Oxygen Separation Membranes. Journal of Membrane Science, 163, 307-317. https://doi.org/10.1016/S0376-7388(99)00172-6
[3]
Skinner, S.J. (2001) Recent Advances in Perovskite-Type Materials for Solid Oxide Fuel Cell Cathodes. International Journal of Inorganic Materials, 3, 113-121. https://doi.org/10.1016/S1466-6049(01)00004-6
[4]
Hona, R.K., Thapa, A.K. and Ramezanipour, F. (2020) An Anode Material for Lithium-Ion Batteries Based on Oxygen-Deficient Perovskite Sr2Fe2O6-δ. ChemistrySelect, 5, 5706-5711. https://doi.org/10.1002/slct.202000987
[5]
Gómez, L., et al. (2015) Carbon Dioxide Gas Sensing Properties of Ordered Oxygen Deficient Perovskite LnBaCo2O5+δ (Ln = La, Eu). Sensors and Actuators B: Chemical, 221, 1455-1460. https://doi.org/10.1016/j.snb.2015.07.080
[6]
Maignan, A., et al. (1997) A Monoclinic Manganite, La0.9MnO3-δ, with coLossal Magnetoresistance Properties near Room Temperature. Solid State Communications, 101, 277-281. https://doi.org/10.1016/S0038-1098(96)00533-9
[7]
Hona, R.K., Huq, A., et al. (2017) Transformation of Structure, Electrical Conductivity, and Magnetism in AA’Fe2O6-δ, A = Sr, Ca and A’ = Sr. Inorganic Chemistry, 56, 9716-9724. https://doi.org/10.1021/acs.inorgchem.7b01228
[8]
Hona, R.K., Huq, A. and Ramezanipour, F. (2017) Unraveling the Role of Structural Order in the Transformation of Electrical Conductivity in Ca2FeCoO6-δ, CaSrFeCoO6-δ, and Sr2FeCoO6-δ. Inorganic Chemistry, 56, 14494-14505. https://doi.org/10.1021/acs.inorgchem.7b02079
[9]
Ramezanipour, F., et al. (2011) Local and Average Structures and Magnetic Properties of Sr2FeMnO5+y, y = 0.0, 0.5. Comparisons with Ca2FeMnO5 and the Effect of the A-Site Cation. Inorganic Chemistry, 50, 7779-7791. https://doi.org/10.1002/chin.201141009
[10]
Alom, M.S., Kananke-Gamage, C.C.W. and Ramezanipour, F. (2022) Perovskite Oxides as Electrocatalysts for Hydrogen Evolution Reaction. ACS Omega, 7, 7444-7451. https://doi.org/10.1021/acsomega.1c07203
[11]
Hona, R.K., Huq, A. and Ramezanipour, F. (2019) Charge Transport Properties of Ca2FeGaO6-δ and CaSrFeGaO6-δ: The Effect of Defect-Order. Materials Chemistry and Physics, 238, Article ID: 121924. https://doi.org/10.1016/j.matchemphys.2019.121924
[12]
Anderson, C.T. (1935) The Heat Capacities at Low Temperatures of the Oxides of Strontium and Barium1. Journal of the American Chemical Society, 57, 429-431. https://doi.org/10.1021/ja01306a012
[13]
Chen, J.R., et al. (2008) X-Ray Diffraction Analysis and Specific Heat Capacity of (Bi1-xLax) FeO3 Perovskites. Journal of Alloys and Compounds, 459, 66-70. https://doi.org/10.1016/j.jallcom.2007.05.034
[14]
Borhani zarandi, M., et al. (2012) Effect of Crystallinity and Irradiation on Thermal Properties and Specific Heat Capacity of LDPE & LDPE/EVA. Applied Radiation and Isotopes, 70, 1-5. https://doi.org/10.1016/j.apradiso.2011.09.001
[15]
Kokta, B.V., et al. (1976) Effect of Molecular Weight of Polystyrene on Heat Capacity and Thermal Transitions. Thermochimica Acta, 14, 71-86. https://doi.org/10.1016/0040-6031(76)80058-5
[16]
Kousksou, T., et al. (2011) Effect of Heating Rate and Sample Geometry on the Apparent Specific Heat Capacity: DSC Applications. Thermochimica Acta, 519, 59-64. https://doi.org/10.1016/j.tca.2011.02.033
[17]
Hepplestone, S.P., et al. (2006) Size and Temperature Dependence of the Specific Heat Capacity of Carbon Nanotubes. Surface Science, 600, 3633-3636. https://doi.org/10.1016/j.susc.2005.12.070
[18]
Bagatskii, M.I., et al. (2021) Size Effects in the Heat Capacity of Modified MWCNTs. Thermal Science and Engineering Progress, 26, Article ID: 101097. https://doi.org/10.1016/j.tsep.2021.101097
[19]
Hona, R.K. and Ramezanipour, F. (2019) Remarkable Oxygen-Evolution Activity of a Perovskite Oxide from the Ca2-xSrxFe2O6-δ Series. Angewandte Chemie International Edition, 58, 2060-2063. https://doi.org/10.1002/anie.201813000