全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

梯度孔隙泡沫铜对石蜡蓄热性能影响研究
Study on Effect of Gradient Pore Copper Foam on Thermal Storage Performance of Paraffin Wax

DOI: 10.12677/SE.2023.132003, PP. 23-32

Keywords: 相变蓄热,金属泡沫铜,石蜡,实验研究,Phase Change Thermal Storage, Metallic Copper Foam, Paraffin Wax, Experimental Research

Full-Text   Cite this paper   Add to My Lib

Abstract:

提高石蜡蓄热能力是发展相变蓄热技术的重要方法。为解决石蜡导热系数低的问题,本文设计了六种不同的梯度孔隙泡沫铜布置方案,探究了在泡沫铜平行和回型布置方式下,梯度孔隙率变化对石蜡蓄热性能的影响规律。实验结果表明,添加梯度孔隙泡沫铜可提高石蜡的温升速率和温度均匀性,平行布置泡沫铜时,94-96-98梯度孔隙率布置形式能够将温升速率提升30%~200%;回型布置泡沫铜时,98-96-94梯度孔隙率布置形式能将融化时间缩短15~30 min;综合对比各方案,泡沫铜平行布置优于回型布置,泡沫铜平行布置且孔隙率分布为94-96-98时,温度分布最均匀,温升速率最快,为最佳泡沫铜摆放方式。
Improving the thermal storage capacity of paraffin wax is an important method to develop phase change thermal storage technology. In order to solve the problem of low thermal conductivity of paraffin wax, six different gradient porosity copper foam arrangement schemes were designed to investigate the influence law of gradient porosity change on the thermal storage performance of paraffin wax under the parallel and return type arrangement of copper foam in this paper. The experimental results showed that the addition of gradient porosity copper foam could improve the temperature rise rate and temperature uniformity of paraffin wax, and the 94-96-98 gradient porosity arrangement could increase the temperature rise rate by 30%~200% when the copper foam was arranged in parallel; the 98-96-94 gradient porosity arrangement could shorten the melting time by 15~30 min when the copper foam was arranged in return pattern. After a comprehensive comparison of the schemes, the copper foam parallel arrangement is better than the turn-shape arrangement. When the copper foam is arranged in parallel and the porosity distribution is 94-96-98, the temperature distribution is the most uniform and the temperature rise rate is the fastest, which is the best way to place the copper foam.

References

[1]  周宏春, 管永林. 对碳中和导向下我国能源发展的若干战略思考[J]. 中国经济报告, 2021(6): 108-120.
[2]  方桂花, 刘殿贺, 张伟, 等. 复合类相变蓄热材料的研究进展[J]. 化工新型材料, 2021, 49(6): 6-10.
[3]  张瑞, 焦密. 高导热能力的蓄热装置传热性能研究[J]. 电子机械工程, 2019, 35(5): 37-41.
[4]  张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13): 26-32.
[5]  王子晨. 泡沫铝/石蜡复合相变材料蓄热实验研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2020.
[6]  Zhao, C.Y., Lu, W. and Tian, Y. (2010) Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded within Phase Change Materials (PCMs). Solar Energy, 84, 1402-1412.
https://doi.org/10.1016/j.solener.2010.04.022
[7]  Cui, H.T. (2012) Experimental Investigation on the Heat Charging Process by Paraffin Filled with High Porosity Copper Foam. Applied Thermal Engineering, 39, 26-28.
https://doi.org/10.1016/j.applthermaleng.2012.01.037
[8]  Yang, J., Yang, L., Xu, C. and Du, X. (2016) Experi-mental Study on Enhancement of Thermal Energy Storage with Phase-Change Material. Applied Energy, 169, 164-176.
https://doi.org/10.1016/j.apenergy.2016.02.028
[9]  Zhang, Z. and He, X. (2017) Three-Dimensional Numerical Study on Solid-Liquid Phase Change within Open-Celled Aluminum Foam with Porosity Gradient. Applied Thermal En-gineering, 113, 298-308.
https://doi.org/10.1016/j.applthermaleng.2016.10.173
[10]  吴佳妮. 梯度泡沫金属强化中温相变储热单元热性能实验研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2020.
[11]  Mahdi, J.M. and Nsofor, E.C. (2018) Multi-ple-Segment Metal Foam Application in the Shell-and-Tube PCM Thermal Energy Storage System. Journal of Energy Storage, 20, 529-541.
https://doi.org/10.1016/j.est.2018.09.021
[12]  Tao, Y.B., You, Y. and He, Y.L. (2016) Lat-tice Boltzmann Simulation on Phase Change Heat Transfer in Metal Foams/Paraffin Composite Phase Change Material. Applied Thermal Engineering, 93, 476-485.
https://doi.org/10.1016/j.applthermaleng.2015.10.016
[13]  康智强, 徐博文, 夏晓东, 孙健, 常志宇. 地面毛细管辐射板的温度不均匀性和供热能力数值分析[J]. 节能, 2020, 39(10): 15-17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133