全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

干细胞的外泌体在抗皮肤衰老中的研究进展
Research Progress of Stem Cell Exosomes in Anti-Skin Aging

DOI: 10.12677/ACM.2023.134730, PP. 5153-5159

Keywords: 外泌体,细胞外囊泡,干细胞,皮肤衰老,间充质干细胞,诱导多能性干细胞
Extracellular Vesicles
, Exosomes, Stem Cells, Skin Aging, Mesenchymal Stem Cells, Induced Pluripotent Stem Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

干细胞疗法主要是由于干细胞通过旁分泌途径发挥作用,而外泌体在旁分泌机制中起着关键作用。外泌体是细胞释放到细胞外的膜源性囊泡。干细胞来源的外泌体可以修复皮肤损伤,在再生医学中显示出巨大的治疗潜力。本综述主要讨论了间充质干细胞和诱导多能性干细胞来源的外泌体在抗皮肤衰老中的相关研究进展,并为使用干细胞来源的外泌体抗皮肤衰老提供了新的思路。
Stem cell therapy is mainly due to stem cells acting through paracrine pathways, and exosomes play a key role in paracrine mechanisms. Exosomes are membrane-derived vesicles that are released by cells to the outside of the cell. Stem cell-derived exosomes can repair skin damage and show great potential in regenerative medicine. This review discusses the research progress of stem cell-derived exosomes in anti-skin aging, and provides new ideas for the use of stem cell-derived exosomes for anti-skin aging.

References

[1]  Todorova, K. and Mandinova, A. (2020) Novel Approaches for Managing Aged Skin and Nonmelanoma Skin Cancer. Advanced Drug Delivery Reviews, 153, 18-27.
https://doi.org/10.1016/j.addr.2020.06.004
[2]  Wang, Y., Marling, S.J. and McKnight, S.M. (2013) Suppression of Experimental Autoimmune Encephalomyelitis by 300-315 nm Ultravio-let Light. Archives of Biochemistry and Biophysics, 536, 81-86.
https://doi.org/10.1016/j.abb.2013.05.010
[3]  Guan, L.L., Lim, H.W. and Mohammad, T.F. (2021) Sunscreens and Photoaging: A Review of Current Literature. American Journal of Clinical Dermatology, 22, 819-828.
https://doi.org/10.1007/s40257-021-00632-5
[4]  Li, H., Gao, A. and Jiang, N. (2016) Protective Effect of Curcu-min against Acute Ultraviolet B Irradiation Induced Photodamage. Photochemistry and Photobiology, 92, 808-815.
https://doi.org/10.1111/php.12628
[5]  Gilchrest, B.A. (1996) A Review of Skin Ageing and Its Medical Therapy. British Journal of Dermatology, 135, 867-875.
https://doi.org/10.1046/j.1365-2133.1996.d01-1088.x
[6]  Chargaff, E. and West, R. (1946) The Biological Sig-nificance of the Thromboplastic Protein of Blood. Journal of Biological Chemistry, 166, 189-197.
https://doi.org/10.1016/S0021-9258(17)34997-9
[7]  Broe, M.E. and Wieme, R.J. (1977) Spontaneous Shedding of Plasma Membrane Fragments by Human Cells in Vivo and in Vitro. Clinica Chimica Acta, 81, 237-245.
https://doi.org/10.1016/0009-8981(77)90054-7
[8]  Pan, B.-T., Teng, K. and Wu, C. (1985) Electron Microscopic Evidence for Externalization of the Transferrin Receptor in Vesicular Form in Sheep Reticulocytes. Journal of Cell Biol-ogy, 101, 942-948.
https://doi.org/10.1083/jcb.101.3.942
[9]  Monguió-Tortajada, M., Prat-Vidal, C. and Mar-tínez-Falguera, D. (2022) Acellular Cardiac Scaffolds Enriched with MSC-Derived Extracellular Vesicles Limit Ventric-ular Remodelling and Exert Local and Systemic Immunomodulation in a Myocardial Infarction Porcine Model. Theranostics, 12, 4656-4670.
https://doi.org/10.7150/thno.72289
[10]  Chu, M., Wang, H. and Bian, L. (2022) Nebulization Therapy with Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Pneumonia. Stem Cell Reviews and Reports, 18, 2152-2163.
https://doi.org/10.1007/s12015-022-10398-w
[11]  Abel, F., Murke, F. and Gaida, M. (2020) Extracellular Vesicles Isolated from Patients Undergoing Remote Ischemic Preconditioning Decrease Hypoxia-Evoked Apoptosis of Cardio-myoblasts after Isoflurane but Not Propofol Exposure. PLOS ONE, 15, e0228948.
https://doi.org/10.1371/journal.pone.0228948
[12]  You, B., Pan, S. and Gu, M. (2022) Extracellular Vesicles Rich in HAX1 Promote Angiogenesis by Modulating ITGB6 Translation. Journal of Extracellular Vesicles, 11, e12221.
https://doi.org/10.1002/jev2.12221
[13]  Cheng, L. and Hill, A.F. (2022) Therapeutically Harnessing Extracellular Vesicles. Nature Reviews Drug Discovery, 21, 379-399.
https://doi.org/10.1038/s41573-022-00410-w
[14]  Sil, S., Dagur, R.S., Liao, K. and Peeples, E.S. (2020) Strategies for the Use of Extracellular Vesicles for the Delivery of Thera-peutics. Journal of Neuroimmune Pharmacology, 15, 422-442.
https://doi.org/10.1007/s11481-019-09873-y
[15]  Li, Y., Wang, G., Wang, Q. and Zhang, Y. (2022) Exosomes Secreted from Adipose-Derived Stem Cells Are a Potential Treatment Agent for Immune-Mediated Alopecia. Journal of Immunology Research, 2022, Article ID: 7471246.
https://doi.org/10.1155/2022/7471246
[16]  Shin, K.-O., Ha, D.H. and Kim, J.O. (2020) Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis. Cells, 9, 680.
https://doi.org/10.3390/cells9030680
[17]  Abdul, K.N., Aijaz, A. and Jeschke, M.G. (2021) Stem Cell Therapy for Burns: Story So Far. Biologics, 15, 379-397.
https://doi.org/10.2147/BTT.S259124
[18]  Fan, B., Li, C. and Szalad, A. (2020) Mesenchymal Stromal Cell-Derived Exosomes Ameliorate Peripheral Neuropathy in a Mouse Model of Diabetes. Diabetologia, 63, 431-443.
https://doi.org/10.1007/s00125-019-05043-0
[19]  Yao, J., Huang, K. and Zhu, D. (2021) A Minimally Invasive Exosome Spray Repairs Heart after Myocardial Infarction. ACS Nano, 15, 11099-11111.
https://doi.org/10.1021/acsnano.1c00628
[20]  Cao, J.Y., Wang, B. and Tang, T.T. (2021) Exosomal miR-125b-5p Deriving from Mesenchymal Stem Cells Promotes Tubular Repair by Suppression of p53 in Ischemic Acute Kidney In-jury. Theranostics, 11, 5248-5266.
https://doi.org/10.7150/thno.54550
[21]  Zhang, S., Teo, K.Y.W. and Chuah, S.J. (2019) MSC Exosomes Alleviate Temporomandibular Joint Osteoarthritis by Attenuating Inflammation and Restoring Matrix Homeostasis. Biomaterials, 200, 35-47.
https://doi.org/10.1016/j.biomaterials.2019.02.006
[22]  Lin, F., Chen, W. and Zhou, J. (2022) Mesenchymal Stem Cells Protect against Ferroptosis via Exosome-Mediated Stabilization of SLC7A11 in Acute Liver Injury. Cell Death & Disease, 13, 271.
https://doi.org/10.1038/s41419-022-04708-w
[23]  Willis, G.R., Fernandez-Gonzalez, A. and Anastas, J. (2018) Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Func-tion through Macrophage Immunomodulation. American Journal of Respiratory and Critical Care Medicine, 197, 104-116.
https://doi.org/10.1164/rccm.201705-0925OC
[24]  Zhou, T., He, C., Lai, P., et al. (2022) miR-204-Containing Exosomes Ameliorate GVHD-Associated Dry Eye Disease. Science Advances, 8, eabj9617.
https://doi.org/10.1126/sciadv.abj9617
[25]  Ha, D.H., Kim, H.K., Lee, J., et al. (2020) Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatoryapeutics and Skin Regeneration. Cells, 9, 1157.
https://doi.org/10.3390/cells9051157
[26]  Guo, S., Wang, T. and Zhang, S. (2020) Adipose-Derived Stem Cell-Conditioned Medium Protects Fibroblasts at Different Senescent Degrees from UVB Irradiation Damages. Molecu-lar and Cellular Biochemistry, 463, 67-78.
https://doi.org/10.1007/s11010-019-03630-8
[27]  Gao, W., Wang, X. and Si, Y. (2021) Exosome Derived from ADSCs Attenuates Ultraviolet B-Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 97, 795-804.
https://doi.org/10.1111/php.13370
[28]  Liang, J.X., Liao, X. and Li, S.H. (2020) Antiaging Properties of Exosomes from Adipose-Derived Mesenchymal Stem Cells in Photoaged Rat Skin. BioMed Research International, 2020, Article ID: 6406395.
https://doi.org/10.1155/2020/6406395
[29]  Liu, S.J., Meng, M.Y. and Han, S. (2021) Umbilical Cord Mesenchy-mal Stem Cell-Derived Exosomes Ameliorate HaCaT Cell Photo-Aging. Rejuvenation Research, 24, 283-293.
https://doi.org/10.1089/rej.2020.2313
[30]  Wu, P., Zhang, B. and Han, X. (2021) HucMSC Exosome-Delivered 14-3-3ζ Alleviates Ultraviolet Radiation-Induced Photodamage via SIRT1 Pathway Modulation. Aging (Albany NY), 13, 11542-11563.
https://doi.org/10.18632/aging.202851
[31]  Zhang, K., Yu, L. and Li, F.R. (2020) Topical Application of Exo-somes Derived from Human Umbilical Cord Mesenchymal Stem Cells in Combination with Sponge Spicules for Treat-ment of Photoaging. International Journal of Nanomedicine, 15, 2859-2872.
https://doi.org/10.2147/IJN.S249751
[32]  Gu, Z., Yin, Z. and Song, P. (2022) Safety and Biodistribution of Exo-somes Derived from Human Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 949724.
https://doi.org/10.3389/fbioe.2022.949724
[33]  Wang, A.Y.L. (2021) Human Induced Pluripotent Stem Cell-Derived Exosomes as a New Therapeutic Strategy for Various Diseases. International Journal of Molecular Sci-ences, 22, 1769.
https://doi.org/10.3390/ijms22041769
[34]  Bae, Y.U. and Son, Y. (2019) Embryonic Stem Cell-Derived mmu-miR-291a-3p Inhibits Cellular Senescence in Human Dermal Fibroblasts through the TGF-β Receptor 2 Pathway. The Journals of Gerontology Series A Biological Sciences and Medical Sciences, 74, 1359-1367.
https://doi.org/10.1093/gerona/gly208
[35]  Liu, S., Mahairaki, V. and Bai, H. (2019) Highly Purified Human Ex-tracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells. Stem Cells, 37, 779-790.
https://doi.org/10.1002/stem.2996
[36]  Shi, H., Wang, M., Sun, Y., Yang, D., Xu, W. and Qian, H. (2021) Exo-somes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Frontiers in Cell and Developmental Biology, 9, Article ID: 736022.
https://doi.org/10.3389/fcell.2021.736022
[37]  Oh, M., Lee, J. and Kim, Y. (2018) Exosomes Derived from Hu-man Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. International Journal of Molecular Sci-ences, 19, 1715.
https://doi.org/10.3390/ijms19061715
[38]  Kim, S., Lee, S.K. and Kim, H. (2018) Exosomes Secreted from In-duced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Accelerate Skin Cell Proliferation. International Journal of Molecular Sciences, 19, 3119.
https://doi.org/10.3390/ijms19103119
[39]  Lee, H., Cha, H. and Park, J.H. (2020) Derivation of Cell-Engineered Nanovesicles from Human Induced Pluripotent Stem Cells and Their Protective Effect on the Senescence of Dermal Fi-broblasts. International Journal of Molecular Sciences, 21, 343.
https://doi.org/10.3390/ijms21010343

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133