全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

封闭系统条件下粉细砂水盐迁移及变形分析
Water-Salt Migration and Deformation Analysis of Silty Fine Sand under Closed System Conditions

DOI: 10.12677/HJCE.2023.123047, PP. 425-431

Keywords: 粉细砂,冻融循环,水盐迁移
Silty Fine Sand
, Freeze-Thaw Cycle, Water-Salt Migration

Full-Text   Cite this paper   Add to My Lib

Abstract:

在西北地区广泛分布的冻土及盐渍土中,作为铁路路基C类填料的粉细砂在冻融方面少有研究,本文结合阿拉尔市的实际情况,采用粉细砂为研究对象,进行多次冻融循环后水盐迁移及变形试验研究。结果表明,冻融循环过程中,越靠近冷端,温度变化越剧烈,水盐也向冷端迁移,越靠近顶部水,盐聚集越多;粉细砂素土在冻融循环中变形为融沉,而盐渍土变形为先盐胀后融沉,素土与盐渍土累积变形均表现为沉降的趋势。
In the northwest region widely distributed frozen soil and saline soil, as railway subgrade class C filler, there is little research on the freeze-thawing aspects of silty fine sand. In this paper, combined with the actual situation of Aral City, silty fine sand was used as the research object to carry out experimental research on the water-salt migration and deformation after several freeze-thaw cycles. The results show that during the freeze-thaw cycle, the closer to the cold end, the more severe the temperature changes, the water salt also migrates to the cold end, and the closer to the top, the more water salt accumulates. In the freeze-thaw cycle, the silty fine sand was deformed into thaw sedimentation, while the saline soil was deformed by salt expansion and then thaws sedimentation, and the cumulative deformation of the prime soil and the saline soil showed a tendency of settlement.

References

[1]  徐攸在, 等. 盐渍土地基[M]. 北京: 中国建筑工业出版社, 1993: 1-11.
[2]  Carteret, R., Buzzi, O., Fityus, S., et al. (2014) Effect of Naturally Occurring Salts on Tensile and Shear Strength of Sealed Granular Road Pavements. Journal of Materials in Civil Engineering, 26, 1-13.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000938
[3]  铁道部第一勘测设计院. 盐渍土地区铁路工程[M]. 北京: 中国铁道出版社, 1988: 1-3.
[4]  高江平, 王永刚. 盐渍土工程与力学性质研究进展[J]. 力学与实践, 2011, 33(4): 1-7.
[5]  Netterberg, F. (1979) Salt Damage to Roads: An Interim Guide to Its Diagnosis, Prevention and Repair. Scientia Sinica, 15, 107-122.
[6]  Richards, L.A. (1931) Capillary Conduction of Liquids in Porous Mediums. Physics, 1, 318-333.
https://doi.org/10.1063/1.1745010
[7]  Bear, J. and Gilman, A. (1995) Migration of Salts in the Unsaturated Zone Caused by Heating. Transport in Porous Media, 19, 139-156.
https://doi.org/10.1007/BF00626663
[8]  Zhang, D.F. and Wang, S.J. (2001) Mechanism of Freeze-Thaw Action the Process of Soil Salinization in Northeast China. Environmental Geology, 41, 96-100.
https://doi.org/10.1007/s002540100348
[9]  王玉龙, 常立君, 李舒洁. 冻融循环作用下上覆荷载对盐渍土水盐迁移及变形规律的影响研究[J]. 水利水电技术(中英文), 2022, 53(2): 142-153.
[10]  张恒. 硫酸钠盐渍土盐胀冻胀机理及电化学防治技术研究[D]: [博士学位论文]. 广州: 华南理工大学, 2020.
[11]  张留俊, 裘友强, 张发如, 等. 降水入渗条件下氯盐渍土水盐迁移模拟试验[EB/OL]. 交通运输工程学报: 1-14. http://kns.cnki.net/kcms/detail/61.1369.U.20221207.1043.001.html, 2022-12-07.
[12]  刘健鹏, 杨平, 赵记领. 氯盐粉质黏土冻结过程中变形特性及其机制研究[J]. 岩石力学与工程学报, 2022, 41(8): 1689-1700.
[13]  中铁第一勘察设计院集团有限公司. TB 10001-2016铁路路基设计规范[S]. 北京: 中国铁道出版社, 2017.
[14]  包卫星, 张莎莎. 路用砂类盐渍土盐胀及融陷特性试验研究[J]. 岩土工程学报, 2016, 38(4): 734-739
[15]  蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学, 2016, 37(3): 16-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133