全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOX的遥感飞机检测算法
Remote Sensing Aircraft Detection Algorithm Based on YOLOX

DOI: 10.12677/CSA.2023.133064, PP. 647-656

Keywords: 遥感图像,YOLOX,通道注意力,空间注意力,空间金字塔池化,空洞空间金字塔池化
Remote Sensing Image
, YOLOX, Channel Attention, Spatial Attention, Space Pyramid Pooling (SPP), At-Route Space Pyramid Pooling (ASPP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对遥感飞机检测中存在背景信息复杂、目标尺寸小、特征不明显、多尺度等问题,提出了一种基于YOLOX的遥感飞机目标检测算法。本文以YOLOX模型为基准,在残差网络的基础上加入通道注意力和空间注意力,使网络专注于学习图像中具体目标的结构而忽略背景图的内容细节,从而提高了目标检测的精度,并且对小目标的检测能力、特征不明显的目标的检测精度也有一定的提升;同时,用空洞空间金字塔池化(At-rous Space Pyramid Pooling, ASPP)替换空间金字塔池化(Space Pyramid Pooling, SPP),ASPP可以聚合多尺度上下文信息,增大感受野,提高模型检测同一类别不同尺寸的能力。实验结果显示,在RSOD数据集上AP@0.5提高了1.17%,在UCAS-AOD数据集上AP@0.5提高了1.03%。
A YOLOX-based algorithm for remote sensing aircraft target detection is proposed for the problems of complex background information, small target size, inconspicuous features, and multi-scale in remote sensing aircraft detection. In this paper, the YOLOX model is used as a benchmark, and channel attention and spatial attention are added to the residual network, so that the network focuses on learning the structure of specific targets in the image and ignores the content details of the background map, thus improving the accuracy of target detection, and the detection capability of small targets and the detection accuracy of targets with obscure features; at the same time, atrous space pyramid pooling (At The difference between ASPP and SPP lies in the fact that ASPP incorporates cavity convolution with a larger field of perception for the features extracted from the image and allows the resolution to be aggregated without too much degradation, allowing the aggregation of multi-scale contextual information and increasing the field of perception to improve the model. information, increase the perceptual field and improve the model’s ability to detect different sizes of the same category. The experimental results show that on the RSOD dataset AP@0.5 increased by 1.17%, and on the UCAS-AOD dataset AP@0.5 increased by 1.03%.

References

[1]  侯涛, 蒋瑜. 改进YOLOv4在遥感飞机目标检测中的应用研究[J]. 计算机工程与应用, 2021, 57(12): 224-230.
[2]  熊咏平. 基于YOLO的深度学习目标检测算法研究[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2019.
[3]  张欣, 张永强, 何斌, 李国宁. 基于YOLOv4-tiny的遥感图像飞机目标检测技术研究[J]. 光学技术, 2021, 47(3): 344-351.
https://doi.org/10.13741/j.cnki.11-1879/o4.2021.03.016
[4]  Girshick, R., Donahue, J., Darrell, T., et al. (2013) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 23-28 June 2013, 580-587.
https://doi.org/10.1109/CVPR.2014.81
[5]  Liu, W., Anguelov, D., Erhan, D., et al. (2015) SSD: Single Shot MultiBox Detector. Computer Vision ECCV 2016 14th European Conference, Amsterdam, 11-14 October 2016, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2
[6]  Ge, Z., Liu, S., Wang, F., et al. (2021) YOLOX: Exceeding YOLO Series in 2021.
[7]  Tian, Z., Shen, C., Chen, H., et al. (2020) FCOS: Fully Convolutional One-Stage Object Detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 9626-9635.
https://doi.org/10.1109/ICCV.2019.00972
[8]  Wang, J., Song, L., Li, Z., et al. (2020) End-to-End Object Detec-tion with Fully Convolutional Network. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 15849-15858.
https://doi.org/10.1109/CVPR46437.2021.01559
[9]  He, K., Zhang, X., Ren, S., et al. (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37, 1904-1916.
https://doi.org/10.1109/TPAMI.2015.2389824
[10]  Woo, S., Park, J., Lee, J.Y., et al. (2018) Cbam: Convolutional Block Attention Module. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 8-14 Septem-ber 2018, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1
[11]  Fei, W., Jiang, M., Chen, Q., et al. (2017) Residual Attention Network for Image Classification. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hono-lulu, 21-26 July 2017, 6450-6458.
[12]  Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018) Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848.
https://doi.org/10.1109/TPAMI.2017.2699184
[13]  Yang, L., et al. (2017) Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 55, 2486-2498.
https://doi.org/10.1109/TGRS.2016.2645610
[14]  Zhu, H., Chen, X., Dai, W., et al. (2015) Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network. IEEE International Conference on Image Processing, Quebec City, 27-30 September 2015, 3735-3739.
https://doi.org/10.1109/ICIP.2015.7351502
[15]  张港. 基于深度学习轻量化卷积神经网络的遥感图像场景分类研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133