全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

赤芍治疗糖尿病视网膜病变的网络药理学研究
Network Pharmacologic Study of Radix Pae-oniae Rubra in the Treatment of Diabetes Retinopathy

DOI: 10.12677/ACM.2023.133712, PP. 5002-5016

Keywords: 赤芍,糖尿病视网膜病变,网络药理学,分子对接,作用机制
Radix Paeoniae Rubra
, Diabetes Retinopathy, Network Pharmacologic, Molecular Docking, Mechanism Research

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:应用网络药理学研究赤芍治疗糖尿病视网膜病变(diabetes retinopathy, DR)的潜在作用机制。方法:通过中药系统药理学数据库及分析平台(TCMSP)筛选出赤芍的活性成分及潜在靶点,通过GeneCards、OMIM、TTD、PharmGKB、DrugBank数据库挖掘糖尿病视网膜病变的相关靶点。应用Cytoscape 3.9.1软件构建赤芍成分–靶点相互作用网络图。应用韦恩图获取药物和疾病的交集靶点。将交集靶点上传至metascape,对交集靶点进行GO和KEGG富集分析。对交集靶点进行网络拓扑分析,并应用Cytoscape 3.9.1软件的centiscape插件筛选出关键靶点。结果:共查找到符合筛选条件的药物成分29种,获得潜在靶点99个,共获得疾病相关靶点859个,药物–疾病交集靶点32个;利用网络拓扑分析最终筛选出CASP3、ESR1、AR、TP53、VEGFA、CAT、TNF、AKT1、IL6共9个关键靶点。分析得出赤芍治疗糖尿病视网膜病变的关键靶点主要被富集在AGE-RAGE、HIF-1、PI3K-Akt、Fluid shear stress and atherosclerosis、NF-κB等信号通路。结论:本研究结果初步验证和预测了赤芍对治疗DR的作用机制,为进一步临床验证及药理实验提供参考。
Objective: To investigate the potential mechanism of network pharmacology in the treatment of diabetes retinopathy (DR). Methods: The active constituents and potential targets of Radix Paeoniae Rubra were screened out by the Chinese Traditional Medicine System Pharmacology (TCMSP) data-base. The related targets of DR were mined through GeneCards, OMIM, TTD, PharmGKB, and Drug-Bank databases. The drug composition-target interaction network diagram was constructed by us-ing Cytoscape 3.9.1 software. The intersection targets of drugs and diseases were obtained by the Venn diagrams. The intersection targets were uploaded to metascape for GO and KEGG enrichment analysis. Network topology analysis was carried out on intersection targets and the key targets were screened by using centiscape plug-in of Cytoscape 3.9.1. Results: A total of 29 drug ingredients meeting the screening conditions were identified; 99 potential targets and a total of 859 dis-ease-related targets were obtained. There were 32 drug-disease intersection targets. Nine key tar-gets including CASP3, ESR1, AR, TP53, VEGFA, CAT, TNF, AKT1, and IL6 were selected by network topology analysis. The analysis results indicated that the key targets of Radix Paeoniae Rubra in DR were mainly concentrated in AGE-RAGE, HIF-1, PI3K-Akt, Fluid shear stress and atherosclerosis, and NF-κB signaling pathways. Conclusions: The results of this study preliminarily verify and predict the mechanism of action of Radix Paeoniae Rubra in the treatment of DR, and provide a reference for further clinical validation and pharmacological experiments.

References

[1]  Sabanayagam, C., Yip, W., Ting, D.S., et al. (2016) Ten Emerging Trends in the Epidemiology of Diabetic Retinopathy. Ophthalmic Epidemiology, 23, 209-222.
https://doi.org/10.1080/09286586.2016.1193618
[2]  Flaxman, S.R., Bourne, R.R.A., Resnikoff, S., et al. (2017) Global Causes of Blindness and Distance Vision Impairment 1990-2020: A Systematic Review and Meta-Analysis. The Lancet Global Health, 5, e1221-e1234.
https://doi.org/10.1016/S2214-109X(17)30393-5
[3]  Yang, Q.H., Zhang, Y., Zhang, X.M., et al. (2019) Preva-lence of Diabetic Retinopathy, Proliferative Diabetic Retinopathy and Non-Proliferative Diabetic Retinopathy in Asian T2DM Patients: A Systematic Review and Meta-Analysis. International Journal of Ophthalmology, 12, 302-311.
[4]  张石凯, 曹永兵. 赤芍的药理作用研究进展[J]. 药学实践杂志, 2021, 39(2): 97-101.
[5]  朱素华. 芍药苷抑制糖尿病视网膜病变基质金属蛋白酶9激活的研究[D]: [硕士学位论文]. 南京: 南京医科大学, 2017.
[6]  张博, 李凤君, 左中夫. 芍药苷对糖尿病大鼠视网膜Müller细胞的保护作用[J]. 中国中医眼科杂志, 2019, 29(1): 5-9.
[7]  Ru, J., Li, P., Wang, J., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[8]  Xu, X., Zhang, W., Huang, C., et al. (2012) A Novel Chemometric Method for the Prediction of Human Oral Bioavailability. International Journal of Molecular Sciences, 13, 6964-6982.
https://doi.org/10.3390/ijms13066964
[9]  Deacon, C.F. (2020) Dipeptidyl Peptidase 4 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinol-ogy, 16, 642-653.
https://doi.org/10.1038/s41574-020-0399-8
[10]  马璐, 田国祥, 耿辉, 等. 中药系统药理数据库TCMSP及其分析应用简介[J]. 中国循证心血管医学杂志, 2020, 12(12): 1413-1416.
[11]  Coudert, E., Gehant, S., De Castro, E., et al. (2023) Annotation of Biologically Relevant Ligands in UniProtKB Using ChEBI. Bioinformatics, 39, btac793.
https://doi.org/10.1101/2022.08.19.504519
[12]  Shannon, P., Markiel, A., Ozier, O., et al. (2003) Cyto-scape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504.
https://doi.org/10.1101/gr.1239303
[13]  Stelzer, G., Rosen, N., Plaschkes, I., et al. (2016) The Gene-Cards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33.
https://doi.org/10.1002/cpbi.5
[14]  Amberger, J.S. and Hamosh, A. (2017) Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Current Protocols in Bioinformatics, 58, 1.2.1-1.2.12.
https://doi.org/10.1002/cpbi.27
[15]  Zhou, Y., Zhang, Y., Lian, X., et al. (2022) Therapeutic Target Database Up-date 2022: Facilitating Drug Discovery with Enriched Comparative Data of Targeted Agents. Nucleic Acids Research, 50, D1398-D1407.
https://doi.org/10.1093/nar/gkab953
[16]  Whirl-Carrillo, M., Huddart, R., Gong, L., et al. (2021) An Evi-dence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clinical Pharmacol-ogy and Therapeutics, 110, 563-572.
https://doi.org/10.1002/cpt.2350
[17]  Wishart, D.S., Feunang, Y.D., Guo, A.C., et al. (2018) DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Research, 46, D1074-D1082.
https://doi.org/10.1093/nar/gkx1037
[18]  Szklarczyk, D., Morris, J.H., Cook, H., et al. (2017) The STRING Data-base in 2017: Quality-Controlled Protein-Protein Association Networks, Made Broadly Accessible. Nucleic Acids Re-search, 45, D362-D368.
https://doi.org/10.1093/nar/gkw937
[19]  Zhou, Y., Zhou, B., Pache, L., et al. (2019) Metascape Provides A Biolo-gist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523.
https://doi.org/10.1038/s41467-019-09234-6
[20]  段俊国, 金明, 接传红, 等. 糖尿病视网膜病变中医诊疗标准[J]. 世界中西医结合杂志, 2011, 6(7): 632-637.
[21]  刘荣, 朱铭卿. 地黄赤芍祛瘀汤治疗非增殖期糖尿病视网膜病变40例[J]. 浙江中医杂志, 2021, 56(10): 730.
[22]  师珍珍. 黄芩素对糖尿病大鼠血清及视网膜RAGE/ICAM-1/NF-κB信号通路的影响[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2022.
[23]  Pan, L., Sze, Y.H., Yang, M., et al. (2022) Baicalein-A Potent Pro-Homeostatic Regulator of Microglia in Retinal Ischemic Injury. Frontiers in Immunology, 13, Article 837497.
https://doi.org/10.3389/fimmu.2022.837497
[24]  田亚丽, 巴合提别克?托合塔尔拜克, 古丽海夏?哈勒玛合拜, 等. 鞣花酸促进自噬性清除改善2型糖尿病小鼠肝脏胰岛素信号通路[J]. 时珍国医国药, 2019, 30(10): 2353-2356.
[25]  Ding, X., Jian, T., Wu, Y., et al. (2019) Ellagic Acid Ameliorates Oxidative Stress and Insulin Resistance in High Glucose-Treated HepG2 Cells via miR-223/keap1-Nrf2 Pathway. Bio-medicine & Pharmacotherapy, 110, 85-94.
https://doi.org/10.1016/j.biopha.2018.11.018
[26]  张之, 黄琦敏, 李倩, 等. 鞣花酸改善糖尿病小鼠眼组织病变的研究[J]. 中国临床药理学杂志, 2022, 38(15): 1792-1795.
[27]  Oguntibeju, O.O. (2019) Type 2 Diabetes Melli-tus, Oxidative Stress and Inflammation: Examining the Links. International Journal of Physiology, Pathophysiology and Pharmacology, 11, 45-63.
[28]  Babu, S. and Jayaraman, S. (2020) An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy, 131, Article ID: 110702.
https://doi.org/10.1016/j.biopha.2020.110702
[29]  Ponnulakshmi, R., Shyamaladevi, B., Vijayalakshmi, P., et al. (2019) In Silico and in Vivo Analysis to Identify the Antidiabetic Activity of Beta Sitosterol in Adipose Tissue of High Fat Diet and Sucrose Induced Type-2 Diabetic Experimental Rats. Toxicology Mechanisms and Methods, 29, 276-290.
https://doi.org/10.1080/15376516.2018.1545815
[30]  Jayaraman, S., Devarajan, N., Rajagopal, P., et al. (2021) β-Sitosterol Circumvents Obesity Induced Inflammation and Insulin Resistance by Down-Regulating IKKβ/NF-κB and JNK Signaling Pathway in Adipocytes of Type 2 Diabetic Rats. Molecules, 26, Article 2101.
https://doi.org/10.3390/molecules26072101
[31]  Ramu, R., Shirahatti, P.S., Nayakavadi, S., et al. (2016) The Ef-fect of a Plant Extract Enriched in Stigmasterol and β-Sitosterol on Glycaemic Status and Glucose Metabolism in Allox-an-Induced Diabetic Rats. Food & Function, 7, 3999-4011.
https://doi.org/10.1039/C6FO00343E
[32]  Liu, X., He, Y., Li, F., et al. (2015) Caspase-3 Promotes Genetic Instability and Carcinogenesis. Molecular Cell, 58, 284-296.
https://doi.org/10.1016/j.molcel.2015.03.003
[33]  Yang, W.Z., Yang, J., Xue, L.P., et al. (2017) MiR-126 Overex-pression Inhibits High Glucose-Induced Migration and Tube Formation of Rhesus Macaque Choroid-Retinal Endothelial Cells by Obstructing VEGFA and PIK3R2. Journal of Diabetes and Its Complications, 31, 653-663.
https://doi.org/10.1016/j.jdiacomp.2016.12.004
[34]  Yang, J., Han, R., Chen, M., et al. (2018) Associations of Es-trogen Receptor Alpha Gene Polymorphisms with Type 2 Diabetes Mellitus and Metabolic Syndrome: A Systematic Re-view and Meta-Analysis. Hormone and Metabolic Research, 50, 469-477.
https://doi.org/10.1055/a-0620-8553
[35]  张文婷. 芪箭合剂改善小鼠糖尿病物质基础研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2014.
[36]  Kung, C.P. and Murphy, M.E. (2016) The Role of the p53 Tumor Suppressor in Metabolism and Diabetes. The Journal of En-docrinology, 231, R61-R75.
https://doi.org/10.1530/JOE-16-0324
[37]  杨文芝. miR-126通过阻碍VEGFA和PIK3R2抑制高糖下RF/6A细胞的迁移和管腔形成[D]: [博士学位论文]. 昆明: 昆明医科大学, 2017.
[38]  Shirley, M. (2022) Faricimab: First Approval. Drugs, 82, 825-830.
https://doi.org/10.1007/s40265-022-01713-3
[39]  Capit?o, M. and Soares, R. (2016) Angiogenesis and Inflamma-tion Crosstalk in Diabetic Retinopathy. Journal of Cellular Biochemistry, 117, 2443-2453.
https://doi.org/10.1002/jcb.25575
[40]  (2022) Retraction: Cajanonic Acid A Regulates the Ratio of Th17/Treg via Inhibition of Expression of IL-6 and TGF-β in Insulin-Resistant HepG2 Cells. Bioscience Reports, 42, BSR-2018-1716_RET.
https://doi.org/10.1042/BSR-2018-1716_RET
[41]  张洁, 王伟超, 刘素波, 等. 不同分期糖尿病视网膜病变泪液IL-6的表达[J]. 中国现代医学杂志, 2012, 22(14): 51-55.
[42]  Chen, L., Cui, Y., Li, B., et al. (2020) Advanced Glycation End Products Induce Immature Angiogenesis in in Vivo and ex Vivo Mouse Models. American Journal of Physiology Heart and Circulatory Physiology, 318, H519-H533.
https://doi.org/10.1152/ajpheart.00473.2019
[43]  Zhang, Y., Kong, W. and Jiang, J. (2017) Prevention and Treat-ment of Cancer Targeting Chronic Inflammation: Research Progress, Potential Agents, Clinical Studies and Mechanisms. Science China Life Sciences, 60, 601-616.
https://doi.org/10.1007/s11427-017-9047-4
[44]  Hao, K., Kong, F.P., Gao, Y.Q., et al. (2015) Inactivation of Cor-ticotropin-Releasing Hormone-Induced Insulinotropic Role by High-Altitude Hypoxia. Diabetes, 64, 785-795.
https://doi.org/10.2337/db14-0500
[45]  Li, Y., Sun, R., Zou, J., et al. (2019) Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells, 8, Article 752.
https://doi.org/10.3390/cells8070752
[46]  Zeng, M., Shen, J., Liu, Y., et al. (2017) The HIF-1 Antagonist Acriflavine: Visualization in Retina and Suppression of Ocular Neovascularization. Journal of Molecular Medicine, 95, 417-429.
https://doi.org/10.1007/s00109-016-1498-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133