|
CNN手写数字识别系统的ZYNQ实现
|
Abstract:
针对卷积神经网络手写数字识别系统在软件平台上运行速度慢,功耗高的问题,同时更好地满足便携性的需求,利用FPGA并行计算的优势,在ZYNQ平台的逻辑端对卷积神经网络中的卷积层和池化层进行硬件加速,使用MT9V034摄像头采集图像通过屏幕实时显示识别后的数字。与软件平台相比较,处理一帧图像的速度提高了至少178倍,综合后的总片上功耗为1.969 W,逻辑资源的使用量为9.260 K,实现了对手写数字的低功耗快速识别。
In order to solve the problems of slow running speed and high power consumption of the convolutional neural network handwritten digit recognition system on the software platform, and to better meet the needs of portability, this paper uses the advantages of FPGA parallel computing to accelerate the convolutional layer and pooling layer in the convolutional neural network on the logical end of ZYNQ platform. MT9V034 camera is used to collect images and display the recognized numbers in real time through the screen. Compared with the software platform, the speed of processing a frame image is increased by at least 178 times, the total on-chip power consumption is 1.969 W, and the usage of logical resources is 9.260 K, realizing the low power consumption and fast recognition of hand written digits.
[1] | 刘晓阳. 基于忆阻的原位学习神经网络电路设计研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[2] | Shawahna, A., Sait, S.M. and El-Maleh, A. (2019) FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review. IEEE Access, 7, 7823-7859. https://doi.org/10.1109/ACCESS.2018.2890150 |
[3] | 吕浩, 张盛兵, 王佳, 刘硕, 景德胜. 卷积神经网络SIP微系统实现[J]. 计算机工程与应用, 2021, 57(5): 216-221. |
[4] | 齐延荣, 周夏冰, 李斌, 周清雷. 基于FPGA的CNN图像识别加速与优化[J]. 计算机科学, 2021, 48(4): 205-212. |
[5] | 刘之禹, 李述, 王英鹤. 基于ZYNQ的深度学习卷积神经网络加速平台设计[J]. 计算机测量与控制, 2022, 30(12): 264-269. |
[6] | 尹震宇, 徐光远, 张飞青, 徐福龙, 李兴滢. 面向Zynq平台的卷积神经网络单元设计与实现[J]. 小型微型计算机系统, 2022, 43(2): 231-235. |
[7] | Arredondo-Velazquez, M., Diaz-carmo-na, J., Barranco-Gutierrez, A.-I., et al. (2020) Review of Promi-nent Strategies for Mapping CNNs onto Embedded Systems. IEEE Latin America Transactions, 18, 971-982.
https://doi.org/10.1109/TLA.2020.9082927 |
[8] | 焦李成, 孙其功. 深度卷积神经网络FPGA设计与实现[M]. 西安: 西安电子科技大学, 2020. |
[9] | 李慧. 手写体数字识别的卷积神经网络研究与FPGA实现[D]: [硕士学位论文]. 西安: 西安石油大学, 2021.
https://doi.org/10.27400/d.cnki.gxasc.2021.000839 . |
[10] | 刘彬峰. 一种卷积神经网络加速电路的设计与 FPGA实现[D]: [硕士学位论文]. 南京: 东南大学, 2019. |