全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Influencing Factors of Damping Properties of High Manganese Steel

DOI: 10.4236/msce.2023.113005, PP. 52-64

Keywords: High Manganese Steel, Damping Properties, Alloying Elements, Heat Treatment, Deformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel.

References

[1]  Baik, S. (2000) High Damping Fe-Mn Martensitic Alloys for Engineering Applications. J. Nucl Eng Des, 198, 241-252. https://doi.org/10.1016/S0029-5493(99)00268-X
[2]  Zhang, J., Fang, C., Yam, M.C.H. and Lin, C. (2022) Fe-Mn-Si Alloy U-Shaped Dampers with Extraordinary Low-Cycle Fatigue Resistance. J. Eng Struct, 264, Article ID: 114475. https://doi.org/10.1016/j.engstruct.2022.114475
[3]  Zhang, L., Jiang, X., Sun, H., Zhang, Y., Fang, Y. and Shu, R. (2023) Microstructure, Mechanical Properties and Damping Capacity of Fe-Mn-Co Alloys Reinforced with Graphene. J. Alloy Compd, 931, Article ID: 167547. https://doi.org/10.1016/j.jallcom.2022.167547
[4]  Cai, L.Q., Li, Y., He, W. and Peng, H.B. (2021) Researches and Progress in Damping Alloys. J. Metallic Functional Materials, 28, 14.
[5]  Lee, Y.K., Baik, S.H., Kim, J.C. and Choi, C.S. (2003) Effects of Amount of ε Martensite, Carbon Content and Cold Working on Damping Capacity of an Fe-17% Mn Martensitic Alloy. J. Alloy Compd, 355, 10-16. https://doi.org/10.1016/S0925-8388(03)00244-5
[6]  Lee, Y.K., Jun, J.H. and Choi, C.S. (1997) Damping Capacity in Fe-Mn Binary Alloys. J. Transactions of the Iron & Steel Institute of Japan, 37, 1023-1030. https://doi.org/10.2355/isijinternational.37.1023
[7]  Shin, S., Kwon, M., Cho, W., Suh, I.S. and De Cooman, B.C. (2017) The Effect of Grain Size on the Damping Capacity of Fe-17wt%Mn. J. Materials Science and Engineering: A, 683, 187-194. https://doi.org/10.1016/j.msea.2016.10.079
[8]  Jun, J. and Choi, C. (1998) Strain Amplitude Dependence of the Damping Capacity in Fe-17%Mn Alloy. J. Scripta Mater, 38, 543-549. https://doi.org/10.1016/S1359-6462(97)00525-3
[9]  Wen, Y.H., Xiao, H.X., Peng, H.B., Li, N. and Raabe, D. (2015) Relationship between Damping Capacity and Variations of Vacancies Concentration and Segregation of Carbon Atom in an Fe-Mn Alloy. J. Metall Mater Trans A, 46A, 4828-4833. https://doi.org/10.1007/s11661-015-3111-1
[10]  Wang, S.H., Li, J., Chai, F., Luo, X.B., Yang, C.F. and Su, H. (2020) Influence of Solution Temperature on γ → ε Transformation and Damping Capacity of Fe-19Mn Alloy. J. Acta Metall Sin, 56, 1217-1226.
[11]  Huang, S.K., Li, N., Wen, Y.H., Teng, J., Xu, Y.G. and Ding, S. (2008) Temperature Dependence of the Damping Capacity in Fe-19.35Mn Alloy. J. Alloy Compd, 455, 225-230. https://doi.org/10.1016/j.jallcom.2007.01.147
[12]  Li, X. (2019) An Investigation on Design, Microstructures and Properties of High-Mn TRIP Steel with Damping Capacity. Northeastern University.
[13]  Granato, A.V. and Lucke, K. (2004) Theory of Mechanical Damping Due to Dislocations. J. Appl Phys, 27, 583-593. https://doi.org/10.1063/1.1722436
[14]  Granato, A.V. and Lücke, K. (1981) Temperature Dependence of Amplitude-Dependent Dislocation Damping. J. Appl Phys, 52, 7136-7142. https://doi.org/10.1063/1.328687
[15]  Curtze, S., Kuokkala, V.T., Oikari, A., Talonen, J. and Hänninen, H. (2011) Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels. J. Acta Mater, 59, 1068-1076. https://doi.org/10.1016/j.actamat.2010.10.037
[16]  Murasov, M., Duprez, L., Verlinden, B. and Humbeeck, J.V. (2009) Effect of Carbon and Cold Rolling on the Latent Heat upon ε → γ Transformation in Metastable Fe-Mn Alloys. https://doi.org/10.1051/esomat/200902023
[17]  Wang, S.H., Li, J., Ge, X., Chai, F., Luo, X.B., Yang, C.F. and Su, H. (2020) Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite. J. Acta Metall Sin, 56, 311-320.
[18]  Choi, S.M., Park, J.S., An, K. and Lee, Y.K. (2019) Influence of Gas Nitriding on the Damping Capacity of Fe-17Mn Alloy. J. Met Mater Int, 25, 135-139. https://doi.org/10.1007/s12540-018-0157-9
[19]  Lee, Y.K. (2002) Effects of Nitrogen on γ→ε Martensitic Transformation and Damping Capacity of Fe-16%Mn-X%N Alloys. Journal of Materials Science Letters, 21, 1149-1151. https://doi.org/10.1023/A:1016543729437
[20]  Bliznuk, V.V., Glavatska, N.I., Söderberg, O. and Lindroos, V.K. (2002) Effect of Nitrogen on Damping, Mechanical and Corrosive Properties of Fe-Mn Alloys. J. Materials Science and Engineering: A, 338, 213-218. https://doi.org/10.1016/S0921-5093(02)00060-6
[21]  Kim, J., Baik, S., Jun, J. and Lee, Y. (2006) Effect of Chromium Addition on Damping Capacity, Mechanical Property, and Corrosion Resistance of Fe18%Mn Alloy. J. Key Engineering Materials: Key Eng Mat, 319, 73-78. https://doi.org/10.4028/www.scientific.net/KEM.319.73
[22]  Huang, S.K., Li, N., Wen, Y.H., Teng, J., Ding, S. and Xu, Y.G. (2008) Effect of Si and Cr on Stacking Fault Probability and Damping Capacity of Fe-Mn Alloy. J. Materials Science and Engineering: A, 479, 223-228. https://doi.org/10.1016/j.msea.2007.06.063
[23]  Ge, X. (2019) Effect of Mn Content and Pre-Deformation on Microstructure and Properties of Fe-Mn Damping Al1oy. Anhui University of Technology.
[24]  Qu, X. (2021) A Study on Processing Technology, Microstructure and Properties of Vanadium-Containing High Manganese Steel. Northeastern University.
[25]  Chen, G., GironPalomares, B., Sun, H., Wang, H., Zhang, Y., Duan, L., Wang, J. and Cao, P. (2020) Effect of Alloying with Al and Cr on the Microstructure, Damping Capacity and High-Temperature Oxidation Behaviors of Fe-17Mn Damping Alloys. J. Alloy Compd, 819, 153035. https://doi.org/10.1016/j.jallcom.2019.153035
[26]  Meng, L. and Zhang, X.M. (2019) Effects of Cold Rolling Deformation on Microstructure and Damping Capacity of a Fe-Mn-Cr-Co-Si Alloy. J. Mater Res-Ibero-Am J, 22. https://doi.org/10.1590/1980-5373-mr-2018-0900
[27]  Li, N., Xu, Y.-G., Yu, X.-Y., Zhou, H. and Qiu, S.-Y. (2006) Effect of Carbon and Nickel on Phase Transformation Behavior and Damping Capacity in Fe-Mn Alloys. J. Materials for Mechanical Engineering, 8-10.
[28]  Cao, P. and Cai, Z.G. (2020) Effect of Adding Cr, Al, Ti and Ni Alloy Elements on Properties of Fe-17Mn Damping Alloy. Materials for Mechanical Engineering, 44, 8-12.
[29]  Wang, W., Chen, Q., Liu, R., Luo, T., Du, P., Huang, Z., Pan, Q., Liao, Z. and Xu, Y. (2021) Synergistic Damping Effect Mechanism of Magneto-Mechanical Hysteresis and Dislocations Energy Dissipation in FeMnCrCo High Entropy Alloys. J. Materials Science and Engineering: A, 818, 141412. https://doi.org/10.1016/j.msea.2021.141412
[30]  Seo, Y.-S., Lee, Y.-K. and Choi, C.-S. (2005) Effect of Deformation on Damping Capacity and Microstructure of Fe-22%Mn-8%Co Alloy. J. Mater Trans, 46, 1274-1277. https://doi.org/10.2320/matertrans.46.1274
[31]  Ye, W.L. (2018) Martensitic Transformation and Damping Characteristics of Fe-Mn Based Damping Alloys. Harbin Engineering University.
[32]  Ding, S., Li, N., Qiu, S.Y., Zou, H. and Li, C. (2006) Effects of Rare Earth on Damping Capacity of Fe17.5Mn Alloy. Journal of Materials Engineering, 17-19.
[33]  Baik, S.H., Kim, J.C., Jee, K.K., Shin, M.C. and Choi, C.S. (1997) Transformation Behavior and Damping Capacity in Fe17%Mn-X%CY%Ti Alloy. J. Isij Int, 37, 519-522. https://doi.org/10.2355/isijinternational.37.519
[34]  Jee, K.K., Jang, W.Y., Baik, S.H., Shin, M.C. and Choi, C.S. (1995) Transformation Behavior and Its Effect on Damping Capacity in Fe-Mn Based Alloys. Journal de Physique IV (Proceedings), 5, C8-C385. https://doi.org/10.1051/jp4:1995857
[35]  Yu, X.Y., Li, N., Xu, Y.G. and Li, H.W. (2003) Effect of Solution Treatment on the Damping Capacity of Fe-14Mn-0.22C. Journal of Sichuan University, 35, 84-88.
[36]  Girish, B.M., Satish, B.M. and Mahesh, K. (2010) Effect of Stacking Fault Probability and ε Martensite on Damping Capacity of Fe-16%Mn Alloy. J. Mater Design, 31, 2163-2166. https://doi.org/10.1016/j.matdes.2009.11.003
[37]  He, W., Luo, Q., Peng, H. and Wen, Y. (2020) Remarkable Improvement of Damping Capacity in FeMn-Based Alloys by a Long Annealing. J. Mater Sci Tech-Lond, 36, 1-8. https://doi.org/10.1080/02670836.2020.1780002
[38]  Qian, B.N., Peng, H.B. and Wen, Y.H. (2018) A Novel Sandwich Fe-Mn Damping Alloy with Ferrite Shell Prepared by Vacuum Annealing. J. Smart Mater Struct, 27. https://doi.org/10.1088/1361-665X/aaaf95
[39]  Khodaverdi, H., Mohri, M., Ghafoori, E., Ghorabaei, A.S. and Nili-Ahmadabadi, M. (2022) Enhanced Pseudoelasticity of an Fe-Mn-Si-Based Shape Memory Alloy by Applying Microstructural Engineering through Recrystallization and Precipitation. Journal of Materials Research and Technology, 21, 2999-3013. https://doi.org/10.1016/j.jmrt.2022.10.092
[40]  Zhang, J., Wang, Y.N., Luo, Q., Peng, H.B. and Wen, Y.H. (2021) Designing Damping Capacity in High Strength Fe-Mn Based Alloys by Controlling Crystal Defect Configurations. J. Philos Mag, 101, 1765-1781. https://doi.org/10.1080/14786435.2021.1939901
[41]  Li, X., Chen, L.Q., Yuan, X.Y., Yang, H.W. and Chen, L.J. (2016) Effect of Cooling Method and Aging Time on Damping Capacity of Fe-19%Mn Alloy. Journal of University of Science and Technology Liaoning, 39, 5.
[42]  Yan, N., Geng, D.L. and Wei, B.B. (2022) Damping Performance and Martensitic Transformation of Rapidly Solidified Fe-17%Mn Alloy. J. Mater Sci Technol, 117, 1-7. https://doi.org/10.1016/j.jmst.2021.10.042
[43]  Sun, L., Cheng, W.C., Balagurov, A.M., Bobrikov, I.A., Cifre, J., Chudakov, I.B., Jen, S.U., Cheverikin, V.V., Zadorozhnyy, M.Y. and Golovin, I.S. (2020) Effect of Thermal Cycling on Microstructure and Damping Capacity of Fe-26Mn-4Si Alloy. J. Mater Charact, 159, 110001. https://doi.org/10.1016/j.matchar.2019.110001
[44]  Xu, Y.G., Li, N., Yu, X.Y., Qiu, S.Y. and Zou, H., (2005) Effect of Pre-Tensile Strain on the Damping Capacity of Fe-14.04Mn-0.22C Alloy. Journal of Vibration and Shock, 112-113.
[45]  Wang, H.J., Wang, H., Zhang, R.Q., Liu, R., Xu, Y. and Tang, R. (2019) Effect of High Strain Amplitude and Pre-Deformation on Damping Property of Fe-Mn Alloy. J. Alloy Compd, 770, 252-256. https://doi.org/10.1016/j.jallcom.2018.08.099
[46]  Kim, J.H., Jung, J.M., Shim, H. (2021) Tensile Properties and Damping Capacity of Cold-Rolled Fe-20Mn-12Cr-3Ni-3Si Damping Alloy. J. Materials, 14. https://doi.org/10.3390/ma14205975

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133