全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Throughput Growth of Hexagonal Boron Nitride Film Using Porous-Structure Isolation Layer

DOI: 10.4236/msce.2023.113004, PP. 45-51

Keywords: Hexagonal Boron Nitride, Chemical Vapor Deposition, Porous Structure Isolation Layer, High Throughput

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride.

References

[1]  Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., et al. (2010) Boron Nitride Substrates for High-Quality Graphene Electronics. Nat Nanotechnol, 5, 722-726. https://doi.org/10.1038/nnano.2010.172
[2]  Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M.M., Cao, Y., Zheng, J., et al. (2017) A MoTe2-Based Light-Emitting Diode and Photodetector for Silicon Photonic Integrated Circuits. Nat Nanotechnol, 12, 1124-1129. https://doi.org/10.1038/nnano.2017.209
[3]  Lee, G.-H., Cui, X., Kim, Y.D., Arefe, G., Zhang, X., Lee, C.-H., et al. (2015) Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano, 9, 7019-7026. https://doi.org/10.1021/acsnano.5b01341
[4]  Fang, H., Battaglia, C., Carraro, C., Nemsak, S., Ozdol, B., Kang, J.S., et al. (2014) Strong Interlayer Coupling in van der Waals Heterostructures Built from Single-Layer Chalcogenides. Proceedings of the National Academy of Sciences, 111, 6198-6202. https://doi.org/10.1073/pnas.1405435111
[5]  Cui, X., Shih, E.-M., Jauregui, L.A., Chae, S.H., Kim, Y.D., Li, B., et al. (2017) Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. Nano Letters, 17, 4781-4786. https://doi.org/10.1021/acs.nanolett.7b01536
[6]  Vu, Q.A., Shin, Y.S., Kim, Y.R., Nguyen, V.L., Kang, W.T., Kim, H., et al. (2016) Two-Terminal Floating-Gate Memory with van der Waals Heterostructures for Ultrahigh on/off Ratio. Nat Commun, 7, 12725. https://doi.org/10.1038/ncomms12725
[7]  Cai, Q., Scullion, D., Gan, W., Falin, A., Zhang, S., Watanabe, K., et al. (2019) High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Science Advances, 5, eaav0129. https://doi.org/10.1126/sciadv.aav0129
[8]  Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. and Taniguchi, M. (2009) Far-Ultraviolet Plane-Emission Handheld Device Based on Hexagonal Boron Nitride. Nature Photonics, 3, 591-594. https://doi.org/10.1038/nphoton.2009.167
[9]  Tran, T.T., Bray, K., Ford, M.J., Toth, M. and Aharonovich, I. (2016) Quantum Emission from Hexagonal Boron Nitride Monolayers. Nat Nanotechnol, 11, 37-41. https://doi.org/10.1038/nnano.2015.242
[10]  Liu, H., Meng, J., Zhang, X., Chen, Y., Yin, Z., Wang, D., et al. (2018) High-Performance Deep Ultraviolet Photodetectors Based on Few-Layer Hexagonal Boron Nitride. Nanoscale, 10, 5559-5565. https://doi.org/10.1039/C7NR09438H
[11]  Wang, L., Xu, X., Zhang, L., Qiao, R., Wu, M., Wang, Z., et al. (2019) Epitaxial Growth of a 100-Square-Centimetre Single-Crystal Hexagonal Boron Nitride Monolayer on Copper. Nature, 570, 91-95. https://doi.org/10.1038/s41586-019-1226-z
[12]  Chen, T.-A., Chuu, C.-P., Tseng, C.-C., Wen, C.-K., Wong, H.S.P., Pan, S., et al. (2020) Wafer-Scale Single-Crystal Hexagonal Boron Nitride Monolayers on Cu(111). Nature, 579, 219-223. https://doi.org/10.1038/s41586-020-2009-2
[13]  Ma, K.Y., Zhang, L., Jin, S., Wang, Y., Yoon, S.I., Hwang, H., et al. (2022) Epitaxial Single-Crystal Hexagonal Boron Nitride Multilayers on Ni(111). Nature, 606, 88-93. https://doi.org/10.1038/s41586-022-04745-7
[14]  Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., et al. (2010) Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat Nanotechnol, 5, 574-578. https://doi.org/10.1038/nnano.2010.132
[15]  Ma, Z., Chen, H., Song, X., Chen, B., Li, Q., Li, Y., et al. (2022) Porous-Structure Engineered Spacer for High-Throughput and Rapid Growth of High-Quality Graphene Films. Nano Research, 15, 9741-9746. https://doi.org/10.1007/s12274-022-4609-7
[16]  Wang, Y., Qing, F.Z., Jia, Y., Duan, Y.W., Shen, C.Q., Hou, Y.T., et al. (2021) Synthesis of Large-Area Graphene Films on Rolled-Up Cu Foils by a “Breathing” Method. Chem Eng J, 405, Article ID: 127014. https://doi.org/10.1016/j.cej.2020.127014
[17]  Li, Y.L.Z., Sun, L.Z., Chang, Z.H., Liu, H.Y., Wang, Y.C., Liang, Y., et al. (2020) Large Single-Crystal Cu Foils with High-Index Facets by Strain-Engineered Anomalous Grain Growth. Adv Mater, 32, Article ID: 2002034. https://doi.org/10.1002/adma.202002034
[18]  Zhang, L.N., Dong, J.C. and Ding, F. (2021) Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem Rev, 121, 6321-6372. https://doi.org/10.1021/acs.chemrev.0c01191

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133