|
大型主变压器强制油循环风冷系统不间断电源改造
|
Abstract:
变压器冷却系统的优劣决定了变压器的工作油温状态,影响变压器内部绝缘、运行寿命及带负载能力等。为保证冷却机组安全稳定运行,传统变压器冷却系统控制箱使用两路独立电源供电,但是在两路电源故障时,冷却系统控制回路由于无供电无法控制变压器油温,导致变压器被迫减负。针对此类问题,该文提出一种不间断电源改造方案,通过增加一路具有自启动功能的小型柴油发电机组作为备用电源,并对控制回路进行改进,实现双电源故障情况下自动切换到柴油发电机组供电的功能,以减少电源问题导致的冷却系统故障。目前,该方案已应用于某变电站主变控制系统,实际运行情况表明,该方案运行稳定可靠,特别是能够显著提高重点负荷的供电可靠性。此外,该方案改造成本较低,技术实现难度不大,具有推广价值。
Transformer cooling system determines its oil temperature when it is operating and affects the internal insulation, operating life and its load car-rying capacity, et al. To ensure the safety and stability of the cooling units, the control cabinet of the traditional power transformer cooling system uses two power supplies. However, when two power supplies both fail, the cooling system control circuit cannot control the transformer oil temperature without power supply, which causes the transformer to be forced to reduce its load. Aiming at these problems, this paper proposes a improvement scheme of uninterruptible power supply by adding a small diesel generator set with self starting function as the standby power supply. And it improved the control circuit, which can automatically switch to the diesel generator in case of dual power supply failure, so as to reduce the cooling system failure caused by power supply problems. At pre-sent, the scheme has been applied to the main power transformer control system of a substation. The practice operation shows that the scheme is stable and reliable, especially can significantly im-prove the power supply’s reliability of key loads. In addition, the reconstruction cost of this scheme is low, and the technical realization is not difficult, so it is worth popularizing.
[1] | 邱静宜, 丁可为, 卓旺权, 何敏, 陈川. 变压器冷却器系统防全停优化方案分析及实施[J]. 电世界, 2017, 58(2): 8-9. |
[2] | 丘演峰, 曾招辉. 220 kV主变强油循环风冷全停延时起动跳闸回路的探讨[J]. 电气技术, 2013(6): 71-74. |
[3] | 王道志. 变压器强油风冷却器电源自投及故障信号电路的改进[J]. 变压器, 1999, 36(12): 34-36. |
[4] | 刘延超, 翟常营, 洪序平, 等. 核电站变压器智能冷却监控系统设计研发[J]. 工业仪表与自动化装置, 2022(5): 84-90. |
[5] | 卢屹磊. 基于PLC控制的风冷系统研究[D]: [硕士学位论文]. 石家庄: 河北科技大学, 2018. |
[6] | Liu, S.-G. and Xi, Z. (2008) Applica-tion of PLC in Large Transformer Cooling System. Proceedings of 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12-15 July 2008.
https://doi.org/10.1109/ICMLC.2008.4620717 |
[7] | 郭大朋. 大型变压器冷却系统经济运行智能控制[J]. 变压器, 2020, 57(9): 44-47. |
[8] | 章忠国, 刘爽, 姜益民, 等. GBT 6451-2015. 油浸式电力变压器技术参数和要求[S]. 北京: 中国标准出版社, 2015. |
[9] | 程涣超, 凌愍, 李鹏, 李博. DL/T 572-2010. 电力变压器运行规程[S]. 北京: 中国电力出版社, 2010. |
[10] | 秦卓欣. 主变冷却器控制回路的分析与改进[J]. 电工技术, 2016(5): 53-54. |
[11] | 何宇, 邢小平, 于帅. 储能和柴油发电机两级应急电源供电策略[J]. 船电技术, 2021, 41(9): 30-34. |
[12] | 裴丽秋. 主变风冷控制系统故障的原因分析与改进[J]. 电气技术与经济, 2022(4): 125-130. |
[13] | 张向荣. 石家庄某500 kV变电站主变智能冷却控制系统的研究与设计[D]: [硕士学位论文]. 北京: 华北电力大学, 2017. |