|
增量索赔准备金的高斯过程回归模型
|
Abstract:
在保险实践中,索赔管理、业务实践、货币政策和立法变化经常发生,这将会对在同一日历年发生的索赔产生相同影响。对来自同一日历年的多个索赔之间的相关关系进行建模有可能进一步提高预测精度。本文尝试利用高斯过程回归(GPR)和复合核方法对经过对数转换后的增量索赔数据进行建模,从而引入同一日历年间的相关关系,提升预测精度。我们对来自NAIC数据库的三条业务线进行了实证分析,比较并展示了我们模型的性能,为今后的研究提供了新的思路。
In insurance practice, claims management, business practices, monetary policy and legislative changes occur frequently, which will have the same impact on claims occurring in the same calen-dar year. Modelling correlations between multiple claims from the same calendar year has the po-tential to further improve forecasting accuracy. In this paper, Gaussian process regression (GPR) and composite kernel method are used to model the log-transformed incremental claim data, so as to introduce the correlation between the same calendar year and improve the prediction accuracy. We conducted empirical analysis on three lines of business from NAIC database, compared and demonstrated the performance of our models, which provided a new idea for future research.
[1] | Ajne, B. (1994) Additivity of Chain-Ladder Projections. ASTIN Bulletin: The Journal of the IAA, 24, 311-318.
https://doi.org/10.2143/AST.24.2.2005072 |
[2] | Taylor, G. and McGuire, G. (2004) Loss Reserving with GLMs: A Case Study. Partachi 2010 Statistica IMO, 327-391. |
[3] | 毛泽春, 吕立新. 用双广义线性模型预测非寿险未决赔款准备金[J]. 统计研究, 2005(8): 52-55. |
[4] | 孟生旺. 非寿险准备金评估的广义线性模型[J]. 统计与信息论坛, 2009, 24(6): 3-7. |
[5] | Peters, G.W., Shevchenko, P.V. and Wüthrich, M.V. (2009) Model Uncertainty in Claims Re-serving within Tweedie’s Compound Poisson Models. ASTIN Bulletin, 39, 1-33. https://doi.org/10.2143/AST.39.1.2038054 |
[6] | Antonio, K. and Beirlant, J. (2008) Issues in Claims Reserving and Credibility: A Semiparametric Approach with Mixed Models. Journal of Risk and Insurance, 75, 643-676. https://doi.org/10.1111/j.1539-6975.2008.00278.x |
[7] | Shi, P., Basu, S. and Meyers, G.G. (2012) A Bayesian Log-Normal Model for Multivariate Loss Reserving. North American Actuarial Journal, 16, 29-51. https://doi.org/10.1080/10920277.2012.10590631 |
[8] | Zhang, Y. (2010) A General Multivariate Chain Ladder Model. Insurance: Mathematics and Economics, 46, 588-599.
https://doi.org/10.1016/j.insmatheco.2010.03.002 |
[9] | Hess, K.T., Schmidt, K.D. and Zocher, M. (2006) Multivar-iate Loss Prediction in the Multivariate Additive Model. Insurance: Mathematics and Economics, 39, 185-191. https://doi.org/10.1016/j.insmatheco.2006.02.004 |
[10] | Merz, M. and Wüthrich, M.V. (2008) Prediction Error of the Multivariate Chain Ladder Reserving Method. North American Actuarial Journal, 12, 175-197. https://doi.org/10.1080/10920277.2008.10597509 |
[11] | Merz, M. and Wüthrich, M.V. (2009) Prediction Error of the Multivariate Additive Loss Reserving Method for Dependent Lines of Business. Variance, 3, 131-151. |
[12] | Zhang, Y. and Dukic, V. (2013) Predicting Multivariate Insurance Loss Payments under the Bayesian Copula Framework. Journal of Risk and Insurance, 80, 891-919. https://doi.org/10.1111/j.1539-6975.2012.01480.x |
[13] | Shi, P. and Hartman, B.M. (2016) Credibility in Loss Reserving. North American Actuarial Journal, 20, 114-132.
https://doi.org/10.1080/10920277.2015.1109456 |
[14] | Lopes, H., Barcellos, J., Kubrusly, J. and Fernandes, C. (2012) A Non-Parametric Method for Incurred but Not Reported Claim Reserve Estimation. International Journal for Uncertainty Quantification, 2, 39-51.
https://doi.org/10.1615/Int.J.UncertaintyQuantification.v2.i1.40 |
[15] | Lally, N. and Hartman, B. (2018) Estimating Loss Reserves Using Hierarchical Bayesian Gaussian Process Regression With Input Warping. Insurance: Mathematics and Economics, 82, 124-140.
https://doi.org/10.1016/j.insmatheco.2018.06.008 |
[16] | Neal, R.M. (1997) Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification. ArXiv Preprint Physics/9701026. |
[17] | Flaxman, S., Gelman, A., Neill, D., et al. (2015) Fast Hierarchical Gaussian Processes. Manuscript in Preparation. |
[18] | Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes for Machine Learning. MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/3206.001.0001 |
[19] | Ludkovski, M. and Zail, H. (2022) Gaussian Process Models for Incremental Loss Ratios. Variance, 15. |
[20] | Meyers, G. (2011) National Association of Insurance Commissioners Schedule P Data.
https://www.casact.org/publications-research/research/research-resources/loss-reserving-data-pulled-naic-schedule-p |
[21] | Guszcza, J. (2008) Hierarchical Growth Curve Models for Loss Reserving. Casualty Actuarial Society Forum, 3, 146-173. |