|
Material Sciences 2023
阳离子型染料分子的分类及应用
|
Abstract:
近年来,随着纺织和印染行业的快速发展,各种染料分子已被开发并用于众多行业,如造纸、纺织、食品和医药行业。在各种染料分子中,比较重要的一种就是阳离子型染料,而且阳离子型染料分子的种类非常的多,很多有机染料包括亚甲基蓝、花菁类、氧杂蒽类染料还有一些新型的阳离子染料,并且这些阳离子型染料应用非常的广泛,例如,可被用作荧光发光二极管、照相增感染料、光传感器及非线性光学器件等。
In recent years, with the rapid development of the textile and print-ing and dyeing industries, various dye molecules have been developed and used in numerous in-dustries, such as papermaking, textile, food and pharmaceutical industries. In a variety of dye mol-ecules, one of the most important is cationic dyes, and there are many types of cationic dye mole-cules. Many organic dyes include methylene blue, cyanine, oxanthracene and some new cationic dyes, and these cationic dyes are widely used. For example, it can be used as fluorescent light-emitting diode, photographic infecting material, optical sensor and nonlinear optical device.
[1] | Lavis, L.D. and Raines, R.T. (2008) Bright Ideas for Chemical Biology. ACS Chemical Biology, 3, 142-155.
https://doi.org/10.1021/cb700248m |
[2] | Grimm, J.B., Muthusamy, A.K., Liang, Y., et al. (2017) A General Method to Fine-Tune Fluorophores for Live-Cell and In-Vivo Imaging. Nature Methods, 14, 987-994. https://doi.org/10.1038/nmeth.4403 |
[3] | Butkevich, A.N., Lukinavicius, G., D’Este, E. and Hell, S.W. (2017) Cell-Permeant Large Stokes Shift Dyes for Transfection-Free Multicolor Nanoscopy. Journal of the American Chemical Society, 139, 12378-123781.
https://doi.org/10.1021/jacs.7b06412 |
[4] | Kolmakov, K., Hebisch, E., Wolfram, T., et al. (2015) Far-Red Emitting Fluorescent Dyes for Optical Nanoscopy: Fluorinated Silicon-Rhodamines (SiRF Dyes) and Phosphorylated Oxazines. Chemistry—A European Journal, 21, 13344-13356. https://doi.org/10.1002/chem.201501394 |
[5] | Haugland, R.P. (2010) The Molecular Probes Handbook. 11th Edition, Thermo Fisher Scientific, Waltham. |
[6] | Moerner, W.E. and Orrit, M. (1999) Illuminating Single Molecules in Condensed Matters. Science, 283, 1670-1676.
https://doi.org/10.1126/science.283.5408.1670 |
[7] | Grimm, J.B., English, B.P., Chen, J., et al. (2015) A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nature Methods, 12, 244-250. https://doi.org/10.1038/nmeth.3256 |
[8] | Haugland, R.P. (2002) Handbook of Fluorescent Probes and Research Products. 9th Edition, Molecular Probes, Eugene. |
[9] | Reynisson, J., Schuster, G.B., Howerton, S.B., et al. (2003) In-tercalation of Trioxatriangulenium Ion in DNA: Binding, Electron Transfer, X-Ray Crystallography, and Electronic Structure. Journal of the American Chemical Society, 125, 2072. https://doi.org/10.1021/ja0211196 |
[10] | Pothukuchy, A., Mazzitelli, C.L., Rodriguez, M.L., et al. (2005) Duplex and Quadruplex DNA Binding and Photocleavage by Trioxatriangulenium Ion. Biochemistry, 44, 2163. https://doi.org/10.1021/bi0485981 |
[11] | Lofthagen, M., Vernon, C.R., Baldridge, K.K. and Siegel, J.S. (1992) Syn-thesis of Trioxatricornan and Derivatives. Useful Keystones for the Construction of Rigid Molecular Cavities. The Jour-nal of Organic Chemistry, 57, 61.
https://doi.org/10.1021/jo00027a015 |
[12] | Martin, J.C. and Smith, R.G. (1964) Factors Influencing the Basicities of Triarylcarbinols. The Synthesis of Sesquixanthydrol. Journal of the American Chemical Society, 86, 2252. https://doi.org/10.1021/ja01065a030 |
[13] | Reynisson, J., Wilbrandt, R., Brinck, V., et al. (2002) Photophysics of Trioxatriangulenium Ion. Electrophilic Reactivity in the Ground State and Excited Singlet State. Photochemical & Photo-biological Sciences, 1, 763-773.
https://doi.org/10.1039/b204954f |
[14] | Drexhage, K.H. (1973) Structure and Properties of Laser Dyes. In: Schafer, F.P., Ed., Topics in Applied Physics, Vol. 1, Dye Lasers, Springer-Verlag, Berlin, 144. https://doi.org/10.1007/978-3-662-11579-4_4 |
[15] | Drexhage, K. (1977) Fluorescence Efficiency of Laser Dyes. In: Mielenz, K.D., Velapoldi, R.A., Mavrodineanu, R., Eds., Standardisation in Spectrophotometry and Luminescence Measurements, Natl. Bur. Stand. Spec. Publ., No. 466, Government Printing Office, Washington DC, 217-223. |
[16] | Brackmann, U. (1982) Lambdachrome Laser-Grade Dyes. Lambda-Physik, Gottingen. |
[17] | Drexhage, K.H. (1990) Structure and Properties of Laser Dyes. In: Schafer, F.P., Ed., Dye Lasers, Springer-Verlag, Berlin, 179. |
[18] | Vogel, M. and Rettig, W. (1985) Efficient Intramolecular Fluorescence Quenching in Triphenylmethane-Dyes Involving Excited States with Charge Separation and Twisted Conformations. Berichte der Bunsengesellschaft für physikalische Chemie, 89, 962. https://doi.org/10.1002/bbpc.19850890908 |
[19] | Karstens, T. and Kobs, K. (1980) Rhodamine B and Rhodamine 101 as Reference Substances for Fluorescence Quantum Yield Measurements. The Jour-nal of Physical Chemistry, 84, 1871. https://doi.org/10.1021/j100451a030 |
[20] | Lofthagen, M., Siegel, J.S. and Chadha, R. (1991) Synthesis, Structures, and Dynamics of a Macrocyclophane. Journal of the American Chemical Soci-ety, 113, 8785-8790. https://doi.org/10.1021/ja00023a028 |
[21] | Lofthagen, M. and Siegel, J.S. (1995) Synthesis and Conformational Analysis of Trioxatrocornan-Based Macrocyclophanes. The Journal of Organic Chemistry, 60, 2885-2890. https://doi.org/10.1021/jo00114a045 |
[22] | Duxbury, D.F. (1993) The Photochemistry and Photophys-ics of Triphenylmethanes Dyes in Solid and Liquid Media. Chemical Reviews, 93, 381-433. https://doi.org/10.1021/cr00017a018 |
[23] | Barker, C.C., Bride, M.H. and Stamp, A. (1959) Steric Effects in Di and Tri-Arylmethanes. Part I. Electronic Absorption Spectra of o-Methyl Derivatives of Michlers’s Hydrol Blue and Crystal Violet. Conformational Isomers of Crystal Violet. Journal of the Chemical Society, 3957-3963. https://doi.org/10.1039/jr9590003957 |
[24] | Sorensen, T.J., Laursen, B.W. and Santella, M. (2016) Substituted Ac-ridine-Like and Xanthenium like Fluorescent Dyes. WO 2016/116111 A1. |
[25] | Fu, M., Xiao, Y., Qian, X., et al. (2008) A Design Concept of Long-Wavelength Fluorescent Analogs of Rhodamine Dyes: Replacement of Oxygen with Silicon Atom. Chemical Communications, No. 15, 1780-1782.
https://doi.org/10.1039/b718544h |
[26] | Dewar, D. (1950) Color and Constitution. Part I. Basic Dyes. Journal of the Chemical Society, 2329-2334.
https://doi.org/10.1039/jr9500002329 |
[27] | Aaron, C. and Barker, C.C. (1963) Steric Effects in Di- and Tri-Arylmethanes. Part VIII.* Electronic Absorption Spectra of Planar Derivatives of Michler’s Hydrol Blue. Journal of the Chemical Society, 2655-2662.
https://doi.org/10.1039/jr9630002655 |
[28] | Beija, M., Afonso, C.A.M. and Martinho, J.M.G. (2009) Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes. Chemical Society Reviews, 38, 2410-2433. https://doi.org/10.1039/b901612k |
[29] | Mudd, G., Irene, P., Fethers, N., et al. (2015) A General Synthetic Route to Isomerically Pure Functionalized Rhodamine Dyes. Methods and Applications in Fluorescence, 3, Article ID: 045002.
https://doi.org/10.1088/2050-6120/3/4/045002 |
[30] | Shabir, G., Saeed, A. and Channar, P.A. (2018) A Review on the Recent Trends in Synthetic Strategies and Applications of Xanthene Dyes. Mini-Reviews The Journal of Organic Chemistry, 15, 166-197.
https://doi.org/10.2174/1570193X14666170518130008 |
[31] | Poronik, Y.M., Vygranenko, K.V., Gryko, D. and Gryko, D.T. (2019) Rhodols-Synthesis, Photophysical Properties and Applications as Fluorescent Probes. Chemical So-ciety Reviews, 48, 5242-5265. https://doi.org/10.1039/C9CS00166B |
[32] | Wang, L., Du, W., Hu, Z., et al. (2019) Hybrid Rhodamine Fluorophores in the Visible/NIR Region for Biological Imaging. Angewandte Chemie International Edition, 58, 14026-14043. https://doi.org/10.1002/anie.201901061 |
[33] | Deng, F. and Xu, Z. (2019) Heteroa-tom-Substituted Rhodamine Dyes: Structure and Spectroscopic Properties. Chinese Chemical Letters, 30, 1667-16681. https://doi.org/10.1016/j.cclet.2018.12.012 |
[34] | Lavis, L.D. and Raines, R.T. (2008) Bright Ideas for Chemical Bi-ology. ACS Chemical Biology, 3, 142-155.
https://doi.org/10.1021/cb700248m |
[35] | Grimm, J.B., English, B.P., Chen, J., et al. (2015) A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nature Methods, 12, 244-250. https://doi.org/10.1038/nmeth.3256 |
[36] | Nicklas, J. and Buel, E. (2003) Development of an Alu-Based, Real-Time PCR Method for Quantitation of Human DNA in Forensic Samples. Journal of Forensic Sciences, 48, 282-291. https://doi.org/10.1520/JFS2002414 |
[37] | Tian, Z., Tian, B. and Zhang, J. (2013) Synthesis and Characterization of New Rhodamine Dyes with Large Stokes Shift. Dyes and Pigments, 99, 1132-1136. https://doi.org/10.1016/j.dyepig.2013.06.013 |
[38] | Ren, T.-B., Xu, W., Zhang, W., et al. (2018) A General Method to Increase Stokes Shift by Introducing Alternating Vibronic Structures. Journal of the American Chemical Society, 140, 7716-7722. https://doi.org/10.1021/jacs.8b04404 |
[39] | Christiansen, J. (2000) Tracer Studies in Water and Wastewater Treatment. InterBio, The Woodlands. |
[40] | Pepperkok, R. and Saffrich, R. (1999) Microinjection and Detec-tion of Probes in Cells. EMBL, Heidelberg. |
[41] | Amat-Guerri, F., Costela, A., Figuera, J.M., et al. (1993) Laser Action from Rhodamine 6G-Doped Poly(2-hydroxyethyl methacrylate) Matrices with Different Crosslinking Degrees. Chemical Physics Letters, 209, 352-356.
https://doi.org/10.1016/0009-2614(93)80029-O |
[42] | Dexhage, K.H. (1977) Dye Lasers. Springer, Ber-lin. |
[43] | Busch, W. (1994) Sensitivity Enhancement of Fluorescence in Situ Hybridization on Plant Chromosomes. Chromosome Research, 2, 15-20. https://doi.org/10.1007/BF01539448 |
[44] | Fukushima, M., Yanagi, H., Hayashi, S., et al. (2003) Fabrication of Gold Nanoparticles and Their Influence on Optical Properties of Dye-Doped Sol-Gel Films. Thin Solid Films, 438-439, 39-43.
https://doi.org/10.1016/S0040-6090(03)00750-8 |
[45] | Noginov, M.A., Vondrova, M., Williams, S.M., et al. (2005) Spectroscopic Studies of Liquid Solutions of R6G Laser Dye and Ag Nanoparticle Aggregates. Journal of Optics A: Pure and Applied Optics, 7, S219.
https://doi.org/10.1088/1464-4258/7/2/029 |