|
Material Sciences 2023
MSE分子筛的合成进展
|
Abstract:
MSE分子筛的合成方法主要包括后处理合成法、水蒸气辅助晶化法、晶种法和转晶法。对MSE进行改性可以调整分子筛的结构及性质。本文总结了MSE分子筛的合成方法及其改性方法。
The synthesis methods of MSE molecular sieve mainly include post-treatment synthesis method, steam assisted crystallization method, seed method and transcrystallization method. The structure and properties of the molecular sieve can be adjusted by modifying MSE. The synthesis and modification of MSE molecular sieve are summarized in this paper.
[1] | 方陵生. 绿色化学之路[J]. 科学24小时, 2016(11): 26-29. |
[2] | Taramasso, M.P.G. and Notari, B. (1983) Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. United States Patent 4410501. |
[3] | Perego, C., Carati, A., Ingallina, P., et al. (2001) Production of Titanium Containing Molecular Sieves and Their Application in Catalysis. Applied Catalysis A: General, 221, 63-72. https://doi.org/10.1016/S0926-860X(01)00797-9 |
[4] | Thangaraj, A., Kumar, R. and Ratnasamy, P. (1991) Cata-lytic Properties of Crystalline Titanium Silicalites. II, Hydroxylation of Phenol with Hydrogen Peroxide over TS-1 Zeo-lites. Journal of Catalysis, 131, 294-297.
https://doi.org/10.1016/0021-9517(91)90347-7 |
[5] | Dal, P.L., Fornasari, G. and Monti, T. (2002) TS-1 Catalytic Mechanism in Cyclohexanone Oxime Production. Catalysis Communications, 3, 369-375. https://doi.org/10.1016/S1566-7367(02)00145-0 |
[6] | Li, Z., Chen, R., Xing, W., et al. (2010) Continuous Acetone Ammoximation over TS-1 in Atubular Membrane Reactor. Industrial & Engineering Chemistry Research, 49, 6309-6316. https://doi.org/10.1021/ie901912e |
[7] | Zecchina, A., Bordiga, S., Lamberti, C., et al. (1996) Structural Characterization of Ti Centres in Ti-Silicalite and Reaction Mechanisms in Cyclohexanone Ammoximation. Catalysis Today, 32, 97-106.
https://doi.org/10.1016/S0920-5861(96)00075-2 |
[8] | Kong, L., Li, G. and Wang, X. (2004) Mild Oxidation of Thiophene over TS-1/H2O2. Catalysis Today, 93, 341-345.
https://doi.org/10.1016/j.cattod.2004.06.016 |
[9] | Gleeson, D., Sankar, G., Catlow, C.R.A., et al. (2000) The Ar-chitecture of Catalytically Active Centers in Titanosilicate (TS-1) and Related Selective-Oxidation Catalysts. Physical Chemistry Chemical Physics, 2, 4812-4817.
https://doi.org/10.1039/b005780k |
[10] | Jiao, W., He, Y., Li, J., et al. (2015) Ti-rich TS-1: A Highly Active Catalyst for Epoxidation of Methallyl Chloride to 2-Methyl Epichlorohydrin. Applied Catalysis A—General, 491, 78-85. https://doi.org/10.1016/j.apcata.2014.11.030 |
[11] | Hutchings, G.J., Lee, D.F. and Minihan, A.R. (1995) Epoxida-tion of Allyl Alcohol to Glycidol Using Titanium Silicalite TS-1: Effect of the Method of Preparation. Catalysis Letters, 33, 369-385. https://doi.org/10.1007/BF00814239 |
[12] | Tuel, A., Moussa, K.S., Taarit, Y.B., et al. (1991) Hydrox-ylation of Phenol over TS-1: Surface and Solvent Effects. Journal of Molecular Catalysis, 68, 45-52. https://doi.org/10.1016/0304-5102(91)80060-G |
[13] | Clerici, M.G. (1991) Oxidation of Saturated Hydrocarbons with Hydrogen Peroxide, Catalysed by Titanium Silicalite. Applied Catalysis, 68, 249-261. https://doi.org/10.1016/S0166-9834(00)84106-8 |
[14] | Spinace, E.V., Pastore, H.O. and Schuchardt, U. (1995) Cy-clohexane Oxidation Catalyzed by Titanium Silicalite (TS-1): Overoxidation and Comparison with Other Oxidation Sys-tems. Journal of Catalysis, 157, 631-635.
https://doi.org/10.1006/jcat.1995.1328 |
[15] | Schuster, W., Niederer, J.P. and Hoelderich, W.F. (2001) The Gas Phase Oxidative Dehydrogenation of Propane over TS-1. Applied Catalysis A: General, 209, 131-143. https://doi.org/10.1016/S0926-860X(00)00749-3 |
[16] | Maspero, F. and Romano, U. (1994) Oxidation of Alcohols with H2O2 Catalyzed by Titanium Silicalite-1. Journal of Catalysis, 146, 476-482. https://doi.org/10.1006/jcat.1994.1085 |
[17] | Reddy, J.S. and Jacobs, P.A. (1996) Selective Oxidation of Secondary Amines over Titanium Silicalite Molecular Sieves, TS-1 and TS-2. Catalysis Letters, 37, 213-216. https://doi.org/10.1007/BF00807756 |
[18] | Gontier, S. and Tuel, A. (1994) Oxidation of Aniline over TS-1, the Ti-tanium Substituted Silicalite-1. Applied Catalysis A: General, 118, 173-186. https://doi.org/10.1016/0926-860X(94)80312-9 |
[19] | Zeolite Framework Types. http://europe.iza-structure.org/IZA-SC/ftc_table.php |
[20] | 殷剑雍. Ti-MSE分子筛的制备、化学改性及其催化性能研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2019. |
[21] | Shibata, T., Suzuki, S., Kawagoe, H., Komura, K., et al. (2008) Synthesis Investigation on MCM-68 Zeolite with MSE Topology and Its Application for Shape-Selective Al-kylation of Biphenyl. Microporous and Mesoporous Materials, 116, 216-226. https://doi.org/10.1016/j.micromeso.2008.04.006 |
[22] | Calabro, D.C., Cheng, J.C., Crane, R.A., et al. (2000) Syn-thetic Porous Crystalline MCM-68, Its Synthesis and Use. US.6049018. |
[23] | Dorset, D., Weston, S., Dhingra, S., et al. (2006) Crystal Structure of Zeolite MCM-68:?A New Three-Dimensional Framework with Large Pores. The Journal of Physical Chemistry B, 110, 2045-2050.
https://doi.org/10.1021/jp0565352 |
[24] | 颜佳颖. MWW和MSE结构钛硅分子筛的后处理合成及催化性能[D]: [硕士学位论文]. 上海: 华东师范大学, 2017: 50-80. |
[25] | Koyama, Y., Ikeda, T., Tatsumi, T., et al. (2008) A Mul-ti-Dimensional Microporous Silicate That Is Isomorphous to Zeolite MCM-68. Angewandte Chemie International Edition, 47, 1042-1046. https://doi.org/10.1002/anie.200704222 |
[26] | Ikeda, T., Inagaki, S., Hanaoka, T., et al. (2010) In-vestigation of Si Atom Migration in the Framework of MSE-Type Zeolite YNU-2. The Journal of Physical Chemistry C, 114, 19641-19648. https://doi.org/10.1021/jp1079586 |
[27] | Kubota, Y., Itabashi, K., Inagaki, S., et al. (2014) Ef-fective Fabrication of Catalysts from Large-Pore, Multidimensional Zeolites Synthesized without Using Organic Struc-ture-Directing Agents. Chemistry of Materials, 26, 1250-1259.
https://doi.org/10.1021/cm403797j |
[28] | Kubota, Y., Inagaki, S., Nishita, Y., et al. (2015) Remarkable Enhancement of Catalytic Activity and Selectivity of MSE-Type Zeolite by Post-Synthetic Modification. Catalysis Today, 243, 85-91.
https://doi.org/10.1016/j.cattod.2014.06.039 |
[29] | Inagaki, S., Tsuboi, Y., Nishita, Y., et al. (2013) Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chemistry—A Eu-ropean Journal, 19, 7780-7786.
https://doi.org/10.1002/chem.201300125 |
[30] | Sogukkanli, S., Iyoki, K., Elangovan, S.P., et al. (2017) Rational Seed-Directed Synthesis of MSE-Type Zeolites Using a Simple Organic Structure-Directing Agent by Extending the Composite Building Unit Hypothesis. Microporous and Mesoporous Materials, 245, 1-7. https://doi.org/10.1016/j.micromeso.2017.02.073 |
[31] | Hao, H., Chang, Y., Yu, W., et al. (2018) Hierarchical Po-rous MCM-68 Zeolites: Synthesis, Characterization and Catalytic Performance in m-Xylene Isomerization. Microporous and Mesoporous Materials, 263, 135-141.
https://doi.org/10.1016/j.micromeso.2017.12.009 |
[32] | 张阳. MSE型杂原子分子筛的设计合成及其催化性能研究[D]: [硕士学位论文]. 金华: 浙江师范大学, 2021. |
[33] | Zang, Y., Huo, Y., Tang, K., et al. (2021) Role of the Pore-Opening Structure and Hydrophobicity of Stannosilicate Zeolites in Baeyer-Villiger Oxidation. Journal of Catalysis, 394, 8-17. https://doi.org/10.1016/j.jcat.2020.12.003 |