全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ZnO-碳纤维异质结构的乙醇敏感特性研究
Ethanol Gas Sensing Properties of ZnO-Carbon Nanofibers Heterostructures

DOI: 10.12677/APP.2023.133007, PP. 58-65

Keywords: 乙醇,电沉积,ZnO-CNF异质结构,传感器
Ethanol
, Electrodeposition, ZnO-CNF Heterostructures, Sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

呼气中痕量乙醇的低浓度、高灵敏度的快速监测对于非酒精性脂肪肝疾病的初步诊断具有重要意义。健康人体口腔呼出的乙醇浓度低于380 ppb,而中毒和脂肪肝疾病患者口腔呼出乙醇的浓度高达2300 ppb。本工作旨在通过准二维电化学沉积技术构建具有清晰异质界面的ZnO-碳纤维异质结构,通过乙醇气体的吸附来改变接触界面特性引起气敏材料电阻的变化,从而产生变化的电流。选用高导电性的碳纤维与ZnO构建异质结结构,有助于实现低浓度乙醇气体的检测。实验数据表明,该乙醇气体传感器表现出优异的性能,对100 ppb乙醇响应度为460,检测浓度范围为100 ppb~10 ppm,能够满足人体口腔呼出气体中乙醇的检测需求。本工作表明,合理设计的ZnO-碳纤维异质结构是一种具有良好应用前景的乙醇传感器。
Low-concentration, high-sensitivity rapid monitoring of trace ethanol in the breath is important for the initial diagnosis of nonalcoholic fatty liver disease. Healthy humans have oral exhaled ethanol concentrations below 380 ppb, while patients with poisoning and fatty liver disease have oral exhaled ethanol concentrations of up to 2300 ppb. This work aims to construct a ZnO-carbon fiber heterostructure with a clear heterointerface by quasi-two-dimensional electrochemical deposition technology, and change the contact interface characteristics by the adsorption of ethanol gas, causing the change of resistance of the gas-sensitive material, thereby generating a changing current. The selection of highly conductive carbon fiber and ZnO to construct a heterojunction structure is helpful for the detection of low concentrations of ethanol gas. The experimental data show that the ethanol gas sensor shows excellent performance, with a responsivity of 460 for 100 ppb ethanol and a detection concentration range of 100 ppb to 10 ppm, which can meet the detection needs of ethanol in human oral exhaled gas. This work shows that the rationally designed ZnO-carbon fiber heterostructure is an ethanol sensor with good application prospects.

References

[1]  Jacquinot, P., Hodgson, A.W.E., Müller, B., Wehrlib, B. and Hauser, P.C. (1999) Amperometric Detection of Gaseous Ethanol and Acetaldehyde at Low Concentrations on an Au-Nafion Electrode. Analyst, 124, 871-876.
https://doi.org/10.1039/a809685f
[2]  Nahirny, E.P., Bergamini, M.F. and Marcolino-Junior, L.H. (2020) Improvement in the Performance of an Electrochemical Sensor for Ethanol Determination by Chemical Treatment of Graphite. Journal of Electroanalytical Chemistry, 877, Article ID: 114659.
https://doi.org/10.1016/j.jelechem.2020.114659
[3]  Liu, D., Kumar, R., Wei, F., Han, W., Mallik, A. K., Yuan, J., Wan, S., He, X., Kang, Z., Li, F., Yu, C., Farrella, G., Semenova, Y. and Wu, Q. (2018) High Sensitivity Optical Fiber Sensors for Simultaneous Measurement of Methanol and Ethanol. Sensors and Actuators B: Chemical, 271, 1-8.
https://doi.org/10.1016/j.snb.2018.05.106
[4]  Rotariu, L., Bala, C. and Magearu, V. (2004) New Potentiom-etric Microbial Biosensor for Ethanol Determination in Alcoholic Beverages. Analytica Chimica Acta, 513, 119-123.
https://doi.org/10.1016/j.aca.2003.12.048
[5]  宋增良, 冯金淼, 郭硕, 王晓冰. 血液中酒精含量检测方法及标准物质研究进展[J]. 广州化工, 2021, 49(19): 29-30.
[6]  Jeong, S.-Y., Kim, J.-S. and Lee, J.-H. (2020) Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction. Ad-vanced Materials, 32, Article ID: 2002075.
https://doi.org/10.1002/adma.202002075
[7]  Zhu, Y., Zhao, Y., Ma, J., Cheng, X., Xie, J., Xu, P., Liu, H., Liu, H., Zhang, H., Wu, M., Elzatahry, A.A., Alghamdi, A., Deng, Y. and Zhao, D. (2017) Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. Journal of the American Chemical Society, 139, 10365-10373.
https://doi.org/10.1021/jacs.7b04221
[8]  Wang, P., Dong, T., Jia, C. and Yang, P. (2019) Ultraselective Ac-etone-Gas Sensor Based Zno Flowers Functionalized by Au Nanoparticle Loading on Certain Facet. Sensors and Actuators B: Chemical, 288, 1-11.
https://doi.org/10.1016/j.snb.2019.02.095
[9]  Yu, S., Zhang, H., Chen, C. and Lin, C. (2019) Investigation of Humidity Sensor Based on Au Modified ZnO Nanosheets via Hydrothermal Method and First Principle. Sensors and Actuators B: Chemical, 287, 526-534.
https://doi.org/10.1016/j.snb.2019.02.089
[10]  Shen, Z., Zhang, X., Ma, X., Chen, Y., Liu, M., Chen, C., et al. (2018) Synthesis of Hierarchical 3D Porous ZnO Microspheres Decorated by Ultra-Small Au Nanoparticles and Its Highly Enhanced Acetylene Gas Sensing Ability. Journal of Alloys and Compounds, 731, 1029-1036.
https://doi.org/10.1016/j.jallcom.2017.10.156
[11]  Na, H.-B., Zhang, X.-F., Deng, Z.-P., Xu, Y.-M., Huo, L.-H. and Gao, S. (2019) Large-Scale Synthesis of Hierarchically Porous ZnO Hollow Tubule for Fast Response to ppb-Level H2S Gas. ACS Applied Materials & Interfaces, 11, 11627-11635.
https://doi.org/10.1021/acsami.9b00173
[12]  Zhao, J., Zou, X., Zhou, L., Feng, L.-L., et al. (2013) Precur-sor-Mediated Synthesis and Sensing Properties of Wurtzite ZnO Microspheres Composed of Radially Aligned Porous Nanorods. Dalton Transactions, 42, 14357-14360.
https://doi.org/10.1039/c3dt51754c
[13]  Wang, Z., Tian, Z., Han, D. and Gu, H. (2016) Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO. ACS Applied Materials & Interfaces, 8, 5466-5747.
https://doi.org/10.1021/acsami.6b00339
[14]  李客, 李林萍, 曹治中, 刘延辉. 碳纳米管掺杂ZnO复合材料的乙醇气敏特性研究[J]. 化工新型材料, 2023, 51(1): 152-155.
[15]  仝伟光. 基于MEMS技术的金属氧化物半导体p-n异质结乙醇微型传感器[D]: [硕士学位论文]. 北京: 北京化工大学, 2020.
[16]  Wang, Q., Bai, J., Huang, B., Hu, Q., et al. (2019) Design of NiCo2O4@SnO2 Heterostructure Nanofiber and Their Low Temperature Ethanol Sensing Properties. Journal of Alloys and Compounds, 791, 1025-1032.
https://doi.org/10.1016/j.jallcom.2019.03.364
[17]  Zhang, P., Shao, C., Zhang, Z., Zhang, M. , Mu, J., Guo, Z. and Liu, Y. (2011) In Situ Assembly of Well-Dispersed Ag Nanoparticles (AgNPs) on Electrospun Carbon Nano-fibers (CNFs) for Catalytic Reduction of 4-Nitrophenol. Nanoscale, 3, 3357-3363.
https://doi.org/10.1039/c1nr10405e
[18]  Liu, Y., Zhong, M., Shan, G., Li, Y., Huang, B. and Yang, G. (2008) Biocompatible ZnO/Au Nanocomposites for Ultrasensitive DNA Detection Using Resonance Raman Scattering. Journal of Physical Chemistry B, 112, 6484-6489.
https://doi.org/10.1021/jp710399d
[19]  Kang, J., Shin, D.H., Yun, K.N., Masud, F.A., Lee, C.J. and Kim, M.J. (2014) Super Growth of Vertically-Aligned Carbon Nanofibers and Their Field Emission Properties. Carbon, 79, 149-155.
https://doi.org/10.1016/j.carbon.2014.07.054
[20]  Chou, P.-C., Chen, H.-I., Liu, I.-P. and Chen, C.-C. (2015) On the Ammonia Gas Sensing Performance of a RF Sputtered NiO Thin-Film Sensor. IEEE Sensors Journal, 15, 3711-3715.
https://doi.org/10.1109/JSEN.2015.2391286
[21]  Lee, S.-K., Chang, D. and Kim, S.W. (2014) Gas Sensors Based on Carbon Nanoflake/tin Oxide Composites for Ammonia Detection. Journal of Hazardous Mate-rials, 268, 110-114.
https://doi.org/10.1016/j.jhazmat.2013.12.049
[22]  Kuchi, P.S., Roshan, H. and Sheikhi, M.H. (2020) A Novel Room Temperature Ethanol Sensor Based on PbS: SnS2 Nanocomposite with Enhanced Ethanol Sensing Properties. Journal of Alloys and Compounds, 816, Article ID: 152666.
https://doi.org/10.1016/j.jallcom.2019.152666

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133