|
Applied Physics 2023
交流磁场对铝合金电弧增材制造铝合金的组织性能影响
|
Abstract:
为了提高铝合金电弧增材制造微观组织和力学性能,采用纵向交流磁场对铝合金电弧增材制造各向性能影响的研究,以铝硅焊丝作为填充材料,在不同励磁电压下进行单道单层和单道多层沉积试验。结果表明:随着励磁电压的增加,沉积试样的截面孔隙率逐渐降低,当励磁电压达到7.5 V时,焊缝截面孔隙率逐渐提升。在交流磁场的作用下,沉积层的微观组织发生改变,在沉积层的部分区域生长的较细柱状晶粒和等轴晶粒明显增多,横向抗拉强度和纵向抗拉强度相比于无磁场下的分别提升了11.6%和9.6%,拉伸断口处有较多的气孔并且都是从气孔处断裂。交流磁场能明显改善铝合金在电弧增材制造过程中的孔隙率、微观组织和力学性能。
In order to improve the microstructure and mechanical properties of aluminum alloy arc additive manufacturing, the effect of longitudinal AC magnetic field on the manufacturing anisotropy of aluminum alloy arc additive was studied. The single-pass single-layer and single-pass multi-layer deposition tests were carried out with aluminum-silicon welding wire as filler material under different excitation voltage. The results show that with the increase of the excitation voltage, the section porosity of the deposited sample decreases gradually. When the excitation voltage reaches 7.5 V, the section porosity of the weld increases gradually. Under the action of AC magnetic field, the microstructure of the deposit layer changes, and the number of finer columnar grains and equiaxed grains growing in some areas of the deposit layer is significantly increased. The transverse tensile strength and longitudinal tensile strength are 11.6% and 9.6% higher than those without magnetic field, respectively. There are many pores at the tensile fracture and they all break from the pores. AC magnetic field can significantly improve the porosity, microstructure and mechanical properties of aluminum alloy in the process of arc additive manufacturing.
[1] | 熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015(23): 79-85. |
[2] | ?am, G. (2022) Prospects of Producing Aluminum Parts by Wire Arc Additive Manufacturing (WAAM). Materials Today: Proceedings, 62, 77-85. https://doi.org/10.1016/j.matpr.2022.02.137 |
[3] | 李会, 王天, 侯振国, 等. 铝合金薄壁型材搭接角焊缝焊接缺陷及变形研究[J]. 焊接技术, 2013, 42(3): 45-47. |
[4] | 闻瑞利. 铝及铝合金焊接缺陷预防措施分析[J]. 职业, 2010(32): 101-102. |
[5] | Hauser, T., Reisch, R.T., Breese, P.P., et al. (2021) Porosity in Wire Arc Additive Manufacturing of Aluminium Alloys. Additive Manufacturing, 41, e101993. https://doi.org/10.1016/j.addma.2021.101993 |
[6] | Aldalur, E., Suárez, A. and Veiga, F. (2021) Metal Transfer Modes for Wire Arc Additive Manufacturing Al-Mg Alloys: Influence of Heat Input in Microstructure and Porosity. Journal of Materials Processing Technology, 297, e117271. https://doi.org/10.1016/j.jmatprotec.2021.117271 |
[7] | Jin, P., Liu, Y., Li, F., et al. (2021) Realization of Structural Evolution in Grain Boundary, Solute Redistribution and Improved Mechanical Properties by Adding TiCnps in Wire and Arc Additive Manufacturing 2219 Aluminium Alloy. Journal of Materials Research and Technology, 11, 834-848. https://doi.org/10.1016/j.jmrt.2021.01.030 |
[8] | Yuan, T., Ren, X., Chen, S., et al. (2022) Grain Re-finement and Property Improvements of Al-Zn-Mg-Cu Alloy by Heterogeneous Particle Addition during Wire and Arc Additive Manufacturing. Journal of Materials Research and Technology, 16, 824-839. https://doi.org/10.1016/j.jmrt.2021.12.049 |
[9] | Zhang, C., Gao, M. and Zeng, X. (2019) Workpiece Vibration Augmented Wire Arc Additive Manufacturing of High Strength Aluminum Alloy. Journal of Materials Processing Technology, 271, 85-92.
https://doi.org/10.1016/j.jmatprotec.2019.03.028 |
[10] | 刘政军, 芦延鹏, 苏允海, 等. 纵向磁场对WQ960钢焊接接头组织和性能的影响[J]. 沈阳工业大学学报, 2016, 38(4): 379-383. |
[11] | Li, F., Liu, Y., Jin, P., et al. (2021) Appreciable-Tuned Ferrite/Austenite Phase Balance in the Fusion Zone of GTAW Welds via an Assisted Magnetic Field. Journal of Alloys and Compounds, 885, e160851.
https://doi.org/10.1016/j.jallcom.2021.160851 |
[12] | Jin, P., Liu, Y., Sun, Q., et al. (2020) Wetting Mechanism and Microstructure Evolution of TC4/304 Stainless Steel Joined by CMT with an Assisted Hybrid Magnetic Field. Journal of Alloys and Compounds, 819, e152951.
https://doi.org/10.1016/j.jallcom.2019.152951 |
[13] | 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98-103+119-120. |
[14] | 黄武东. 5083铝合金外加纵向磁场P-GMAW焊接技术研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019. |
[15] | 马欣. 外加磁场对细晶粒钢GMAW焊缝组织性能的影响[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2021. |
[16] | 苗秋玉. 铝合金结构激光——电弧复合增材制造研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2019. |
[17] | Mishra, S. and DebRoy, T. (2006) Non-Isothermal Grain Growth in Metals and Alloys. Materials Science and Technology, 22, 253-278. https://doi.org/10.1179/174328406X84094 |