|
堤坝渗漏感应磁梯度检测可行性研究
|
Abstract:
堤坝的渗漏检测对堤坝的安全运行有着重要的意义。由于磁梯度测量具有观测无需与地面接触、野外容易操作以及受地磁场影响较小等优点,该技术可以很好的应用于堤坝渗漏检测当中。为了研究磁梯度张量与渗漏通道之间的关系,本文从频率域Maxwell方程组出发推导控制方程,利用有限元实现了三维频率域磁场正演,并通过理论模型测试了算法的正确性。利用高阶紧致差分算法实现了磁梯度张量的高精度计算。接着文章分析了不同模型参数磁梯度张量和渗漏通道之间的关系,表明Byz和Bzz分量可以很好的反映渗漏通道的位置。通过对磁梯度的求解避免了理论计算磁场所带来的误差,并且提高了异常分辨率。通过本文的研究,可以为实际工作中的参数设计提供理论指导。
The leakage detection of dam is of great significance for the safe operation. Because the magnetic gradient measurement has the advantages of no need to contact the ground, it is easy to operate, and it is less affected by the ground magnetic field when observing. This technology can be well applied in the leak detection. In order to study the relationship between the magnetic gradient and the leakage, this article derives the control equation from the frequency domain Maxwell equation, uses the finite element to achieve the 3D frequency domain magnetic field forward, and tests the correctness of the algorithm through the theoretical model. High-order compact difference scheme is used to achieve the high-precision calculation of magnetic gradient tensor. Then this article analyzes the relationship between the gradient tensor and the leakage channel of different model parameters. It shows that Byz and Bzz can reflect the position of the leakage channel. The solution to the magnetic gradient avoids the error caused by the theoretical calculation of the magnetic place, and improves abnormal resolution. Through the research of this article, the theoretical guidance can be provided for parameter design in actual work.
[1] | 中华人民共和国水利部. 全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2017. |
[2] | 王日升. 土石堤坝三维电场分布规律及渗漏诊断研究[D]: [博士学位论文]. 重庆: 重庆交通大学, 2019. |
[3] | 王新建. 堤坝集中渗漏温度场探测模型及数值实验[D]: [博士学位论文]. 南京: 河海大学, 2006. |
[4] | Bolève, A., Janod, F., Revil, A., et al. (2011) Localization and Quantification of Leakages in Dams Using Time-Lapse Self-Potential Measurements Associated with Salt Tracer Injection. Journal of Hydrology, 403, 242-252.
https://doi.org/10.1016/j.jhydrol.2011.04.008 |
[5] | Sj?dahl, P., Dahlin, T. and Johansson, S. (2010) Using the Resistivity Method for Leakage Detection in a Blind Test at the R?ssvatn Embankment Dam Test Facility in Norway. Bulletin of Engineering Geology and the Environment, 69, 643-658. https://doi.org/10.1007/s10064-010-0314-y |
[6] | Andersson, P., Linder, B. and Nilsson, N. (1991) A Radar System for Mapping Internal Erosion in Embankment Dams. International Water Power & Dam Construction, 43, 11-16. |
[7] | 房纯纲, 葛怀光, 贾永梅, 等. 瞬变电磁法用于堤防渗漏隐患探测的技术问题[J]. 大坝观测与土工测试, 2001, 25(5): 21-24. |
[8] | 邹声杰. 堤坝管涌渗漏流场拟合法理论及应用研究[D]: [博士学位论文]. 长沙: 中南大学, 2009. |
[9] | 傅良魁. 磁电勘探法原理[M]. 北京: 地质出版社, 1984. |
[10] | 邓靖武. 磁电法正演理论研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2005. |
[11] | Butler, S. and Zhang, Z. (2016) Forward Modeling of Geophysical Electromagnetic Methods Using Comsol. Computers and Geosciences, 87, 1-10. https://doi.org/10.1016/j.cageo.2015.11.004 |
[12] | Yang, Y., Weng, A., Li, S., et al. (2018) Surface MMR Enhanced 3D Inversion Using Model Reconstruction Strategy. Journal of Applied Geophysics, 159, 193-203. https://doi.org/10.1016/j.jappgeo.2018.08.015 |
[13] | Coggon, J.H. (1971) Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36, 132-155.
https://doi.org/10.1190/1.1440151 |
[14] | 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994. |
[15] | Christoph, S. and Ralph-uwe, K.S. (2011) Three-Dimensional Adaptive Higher Order Finite Element Simulation for Geo-Electromagnetics—A Marine CSEM Example. Geophysical Journal International, 187, 63-74.
https://doi.org/10.1111/j.1365-246X.2011.05127.x |
[16] | 刘寄仁, 汤井田, 任政勇, 等. 基于Lancos-模型降阶算法的三维频率域可控源电磁快速正演[J]. 地球物理学报, 2022, 65(6): 2326-2339. |
[17] | 刘丽敏. 磁通门张量的结构设计, 误差分析及水下目标探测[D]: [硕士学位论文]. 长春: 吉林大学, 2012. |
[18] | 齐远节, 刘利斌. 求解二阶波动方程的三次样条差分方法 [J]. 大学数学, 2011, 27(1): 59-64. |
[19] | 贾伟. 几种高精度紧致差分格式的构造与应用[D]: [硕士学位论文]. 兰州: 西北师范大学, 2015. |
[20] | 刘云鹤. 异性点源层状介质直流磁场响应计算[D]: [硕士学位论文]. 长春: 吉林大学, 2008. |
[21] | Chen, J., Haber, E. and Oldenburg, D. (2010) Three-Dimensional Numerical Modelling and Inversion of Magnetometric Resistivity Data. Geophysical Journal International, 149, 679-697.
https://doi.org/10.1046/j.1365-246X.2002.01688.x |
[22] | 李斯睿. 地面磁电阻率法三维非线性反演研究[D]: [博士学位论文]. 长春: 吉林大学, 2017. |
[23] | 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005. |
[24] | 金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出版社, 1998. |
[25] | 张继锋, 刘寄仁, 冯兵, 等. 三维陆地可控源电磁法有限元模型降阶快速正演[J]. 地球物理学报, 2020, 63(9): 3520-3533. |
[26] | 张继锋, 刘寄仁, 冯兵, 等. 多源频率域地空系统三维电磁响应分析[J]. 地球物理学报, 2021, 64(4): 1419-1434. |
[27] | 张林成. 基于有限元-无限元耦合的CSAMT三维正反演研究[D]: [博士学位论文]. 长沙: 中南大学, 2017. |
[28] | Pan, K., Zhang, Z., Hu, S., et al. (2021) Three-Dimensional Forward Modeling of Gravity Field Vector and Its Gradient Tensor Using the Compact Difference Schemes. Geophysical Journal International, 224, 1272-1286.
https://doi.org/10.1093/gji/ggaa511 |