|
水声换能器研究现状与发展
|
Abstract:
水声换能器在现代海洋军事与海洋资源开发中有着举足轻重的地位。本文通过阐述水声换能器功能性材料技术、换能器、水听器技术取得的国内外领先成果和应用现状,最后对我国水声换能器的发展动态谈些认识与展望。
Underwater acoustic transducer plays a pivotal role in modern ma-rine military and marine resource development. This paper expounds the leading achievements and application status of underwater acoustic transducer functional material technology, transduc-er and hydrophone technology at home and abroad, then give the development trends of underwa-ter acoustic transducer.
[1] | 莫喜平. 水声换能器发展中的技术创新[J]. 陕西师范大学学报(自然科学版), 2018, 46(3): 1-12. |
[2] | 莫喜平. 我国水声换能器技术研究进展与发展机遇[J]. 中国科学院院刊, 2019, 34(3): 272-282. |
[3] | 程恩, 袁飞, 苏为, 高春仙, 曾文俊, 孙海信, 胡晓毅. 水声通信技术研究进展[J]. 厦门大学学报(自然科学版), 2011, 50(2): 271-275. |
[4] | Pentland, A.P. (1984) Fractal-Based Description of Natural Science. IEEE Transaction on Pattern Analy-sis and Machine Intelligence, 6, 661-674. https://doi.org/10.1109/TPAMI.1984.4767591 |
[5] | 章毓晋. 图像分割[M]. 北京: 科学出版社, 2001. |
[6] | Powers, J.L., Moffett, M.B. and Nussbaum, F. (2000) Single Crystal Naval Transducer Development. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelec-trics, Vol. 1, 351-354. |
[7] | Luo, H.S., Xu, G.S., Wang, P.C., et al. (1999) Growth and Characterization of Relax or Ferroelectric PMNT Single Crystals. Ferroelectrics, 231, 97-102. https://doi.org/10.1080/00150199908014518 |
[8] | Luo, J., Taylor, S., Hackenberger, W., et al. (2013) Large Field Property Assessment of Mn:PIN-PMN-PT Crystals for High Power Transducers. 2013 Joint IEEE International Sym-posium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM), Prague, 21-25 July 2013, 1-4.
https://doi.org/10.1109/ISAF.2013.6748670 |
[9] | Chang, K.C., Chan, H.L.W., et al. (2003) Single Crystal PMNPT/Epoxy 1-3 Composites for Ultrasonic Transducer Applications. IEEE Transactions on Ultrasonics, Ferroelec-trics, and Frequency Control, 50, 1177-1183.
https://doi.org/10.1109/TUFFC.2003.1235328 |
[10] | Sammoura, F., Sheltorn, S., Akhbari, S., et al. (2014) A Two-Port Piezoelectric Micromachined Ultrasonic Transducer. 2014 15th International Conference on Electronic Pack-aging Technology, Chengdu, 12-15 August 2014.
https://doi.org/10.1109/ISAF.2014.6923004 |
[11] | Sherlock, N.P. and Meyer, R.J. (2012) Modified Single Crystals for High-Power Underwater Projectors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 1285-1291.
https://doi.org/10.1109/TUFFC.2012.2319 |
[12] | 梁家宁, 莫喜平, 柴勇, 刘永平. 弛豫铁电单晶/压电陶瓷混合激励换能器[J]. 声学学报, 2022, 47(6): 757-764. |
[13] | 高嘉纬, 黄文美, 王超. 超磁致伸缩材料叠堆结构动态涡流损耗模型及性能分析[J]. 微特电机, 2017, 45(8): 24-27, 36. |
[14] | 陈志中. 超磁致伸缩材料特性及其换能器测试技术研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2020 |
[15] | 白娟. 稀土-铁材料磁致伸缩换能器的结构设计与特性分析[D]: [硕士学位论文]. 天津: 河北工业大学, 2014 |
[16] | Wakiwaka, H., Aoki, K., Yoshikawa, T., et al. (1997) Maximum Output of a Low Frequency Sound Source Using Giant Magnetostrictive Material. Journal of Alloys and Compounds, 258, 87-92.
https://doi.org/10.1016/S0925-8388(97)00074-1 |
[17] | 罗豪甦, 焦杰, 陈瑞, 朱荣峰, 张章, 徐嘉林, 赵静, 王西安, 林迪, 陈建伟, 狄文宁, 鲁丽, 朱莉莉. 弛豫铁电单晶的多功能特性及其器件应用[J]. 人工晶体学报, 2021, 50(5): 783-802. |
[18] | 白玮, 王佳荣, 王婷, 杜红亮, 李飞, 徐卓, 许欣然, 郑震宇. 基于1-3型压电单晶复合材料的高频宽带发射换能器[J]. 硅酸盐学报, 2022, 50(3): 556-562. |
[19] | 李启虎. 第一讲进入21世纪的声呐技术[J], 物理, 2005, 35(5): 402-407. |
[20] | Hayes, H.C. (1936) Sound Generating and Directing Apparatus. U.S. Patent 2,064,911. |
[21] | Meng, Z., Chen, W., Wang, J.F., et al. (2021) Recent Progress in Fiber-Optic Hydrophone. Photonic Sensors, 11, 109-122. https://doi.org/10.1007/s13320-021-0618-5 |
[22] | Kirkendall, C.K. and Dandridge, A. (2004) Overview of High Performance Fibre-Optic Sensing. Journal of Physics D: Applied Physics, 37, R197-R216. https://doi.org/10.1088/0022-3727/37/18/R01 |
[23] | 何向阁, 文鹏飞, 杨辉, 古利娟, 卢海龙, 张敏. 基于分布式光纤传感技术实现的小道距海上拖缆地震数据采集系统[J]. 石油物探, 2022, 61(1): 70-77. |
[24] | 孙贵青, 李启虎. 声矢量传感器研究进展[J]. 声学学报, 2004, 29(6): 481-490. |
[25] | 陈尚, 薛晨阳, 张斌珍, 等. 一种新型的MEMS单矢量水听器研究[J]. 兵工学报, 2008, 29(6): 673-677. |
[26] | 安然, 贾东曜. 专利视角下的水声换能器技术发展分析[J]. 电声技术, 2022, 46(6): 41-43. |