|
应激颗粒及其与逆转录病毒的相互作用
|
Abstract:
逆转录病毒感染严重威胁人类健康,它与疾病发生息息相关,可引起恶性肿瘤和免疫缺陷症。近年来,越来越多的研究表明,逆转录病毒能够通过与应激颗粒(Stress granules, SGs)的相互作用,在病毒感染以及疾病发生过程中发挥重要功能。本文主要总结了应激颗粒的形成和组分,以及逆转录病毒与应激颗粒的相互作用在病毒感染过程中的作用,为研究逆转录病毒感染以及相关疾病的发生提供新的思路。
Retrovirus infection is a serious threat to human health. It is closely related to the occurrence of diseases and can cause malignant tumors and immunodeficiency. In recent years, more and more studies have shown that retroviruses can play an important role in viral infection and disease occurrence by interacting with stress granules (SGs). This paper mainly summarizes the formation and composition of stress particles, and the role of the interaction between retrovirus and stress particles in the process of virus infection. It provides new ideas for the study of retroviral infection and the occurrence of related diseases.
[1] | Eiermann, N., et al. (2020) Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses, 12, E984. https://doi.org/10.3390/v12090984 |
[2] | Garaigorta, U., et al. (2012) Hepatitis C Virus (HCV) Induces Formation of Stress Granules Whose Proteins Regulate HCV RNA Replication and Virus Assembly and Egress. Journal of Virology, 86, 11043-11056.
https://doi.org/10.1128/JVI.07101-11 |
[3] | Cheng, J., et al. (2020) Typical Stress Granule Proteins Interact with the 3’-UTR of Enterovirus D68 to Inhibit Viral Replication. Journal of Virology, 94, e02041-19. https://doi.org/10.1128/JVI.02041-19 |
[4] | Catanzaro, N. and Meng, X.-J. (2019) Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-Induced Stress Granules Are Associated with Viral Replication Complexes and Suppression of Host Translation. Virus Research, 265, 47-56. https://doi.org/10.1016/j.virusres.2019.02.016 |
[5] | Valiente-Echeverría, F., Melnychuk, L. and Mouland, A.J. (2012) Viral Modulation of Stress Granules. Virus Research, 169, 430-437. https://doi.org/10.1016/j.virusres.2012.06.004 |
[6] | Brownsword, M.J. and Locker, N. (2023) A Little Less Aggregation a Little More Replication: Viral Manipulation of Stress Granules. Wiley Interdisciplinary Reviews: RNA, 14, e1741. https://doi.org/10.1002/wrna.1741 |
[7] | Kedersha, N.L., et al. (1999) RNA-Binding Proteins TIA-1 and TIAR Link the Phosphorylation of eIF-2α to the Assembly of Mammalian Stress Granules. The Journal of Cell Biology, 147, 1431-1442.
https://doi.org/10.1083/jcb.147.7.1431 |
[8] | Buchan, J.R. and Parker, R. (2009) Eukaryotic Stress Granules: The Ins and Outs of Translation. Molecular Cell, 36, 932-941. https://doi.org/10.1016/j.molcel.2009.11.020 |
[9] | Kimball, S.R., et al. (2003) Mammalian Stress Granules Represent Sites of Accumulation of Stalled Translation Initiation Complexes. American Journal of Physiology-Cell Physiology, 284, C273-C284.
https://doi.org/10.1152/ajpcell.00314.2002 |
[10] | Jackson, R.J., Hellen, C.U. and Pestova, T.V. (2010) The Mechanism of Eukaryotic Translation Initiation and Principles of Its Regulation. Nature Reviews Molecular Cell Biology, 11, 113-127. https://doi.org/10.1038/nrm2838 |
[11] | Anderson, P. and Kedersha, N. (2006) RNA Granules. The Journal of Cell Biology, 172, 803-808.
https://doi.org/10.1083/jcb.200512082 |
[12] | Riggs, C.L., et al. (2020) Mammalian Stress Granules and P Bodies at a Glance. Journal of Cell Science, 133, jcs242487. https://doi.org/10.1242/jcs.242487 |
[13] | Wolozin, B. and Ivanov, P. (2019) Stress Granules and Neurodegeneration. Nature Reviews Neuroscience, 20, 649-666.
https://doi.org/10.1038/s41583-019-0222-5 |
[14] | Yang, X., et al. (2018) Picornavirus 2A Protease Regulates Stress Granule Formation to Facilitate Viral Translation. PLoS Pathogens, 14, e1006901. https://doi.org/10.1371/journal.ppat.1006901 |
[15] | Yang, X., et al. (2019) SG Formation Relies on eIF4GI-G3BP Interaction Which Is Targeted by Picornavirus Stress Antagonists. Cell Discovery, 5, 1. https://doi.org/10.1038/s41421-018-0068-4 |
[16] | Garcia, M., Meurs, E. and Esteban, M. (2007) The dsRNA Protein Kinase PKR: Virus and Cell Control. Biochimie, 89, 799-811. https://doi.org/10.1016/j.biochi.2007.03.001 |
[17] | Harding, H.P., et al. (2000) Perk Is Essential for Translational Regulation and Cell Survival during the Unfolded Protein Response. Molecular Cell, 5, 897-904. https://doi.org/10.1016/S1097-2765(00)80330-5 |
[18] | Lu, L., Han, A.-P. and Chen, J.-J. (2001) Translation Initiation Control by Heme-Regulated Eukaryotic Initiation Factor 2α Kinase in Erythroid Cells under Cytoplasmic Stresses. Molecular and Cellular Biology, 21, 7971-7980.
https://doi.org/10.1128/MCB.21.23.7971-7980.2001 |
[19] | Kedersha, N. and Anderson, P. (2009) Regulation of Translation by Stress Granules and Processing Bodies. Progress in Molecular Biology and Translational Science, 90, 155-185. https://doi.org/10.1016/S1877-1173(09)90004-7 |
[20] | Anda, S., Zach, R. and Grallert, B. (2017) Activation of Gcn2 in Response to Different Stresses. PLOS ONE, 12, e0182143. https://doi.org/10.1371/journal.pone.0182143 |
[21] | Deng, J., et al. (2002) Activation of GCN2 in UV-Irradiated Cells Inhibits Translation. Current Biology, 12, 1279-1286.
https://doi.org/10.1016/S0960-9822(02)01037-0 |
[22] | Hofmann, S., et al. (2021) Molecular Mechanisms of Stress Granule Assembly and Disassembly. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1868, Article ID: 118876. https://doi.org/10.1016/j.bbamcr.2020.118876 |
[23] | Sidibé, H. and Vande Velde, C. (2022) Collective Learnings of Studies of Stress Granule Assembly and Composition. In: Matěj?, D. and Chao, J.A., Eds., The Integrated Stress Response: Methods and Protocols, Springer, Berlin, 199-228.
https://doi.org/10.1007/978-1-0716-1975-9_13 |
[24] | Anderson, P. and Kedersha, N. (2008) Stress Granules: The Tao of RNA Triage. Trends in Biochemical Sciences, 33, 141-150. https://doi.org/10.1016/j.tibs.2007.12.003 |
[25] | Kolobova, E., et al. (2009) Microtubule-Dependent Association of AKAP350A and CCAR1 with RNA Stress Granules. Experimental Cell Research, 315, 542-555. https://doi.org/10.1016/j.yexcr.2008.11.011 |
[26] | Tsai, N.P., Ho, P.C. and Wei, L.N. (2008) Regulation of Stress Granule Dynamics by Grb7 and FAK Signalling Pathway. The EMBO Journal, 27, 715-726. https://doi.org/10.1038/emboj.2008.19 |
[27] | Asante-Appiah, E. and Skalka, A.M. (1997) Molecular Mechanisms in Retrovirus DNA Integration. Antiviral Research, 36, 139-156. https://doi.org/10.1016/S0166-3542(97)00046-6 |
[28] | Takatsuki, K. (2005) Discovery of Adult T-Cell Leukemia. Retrovirology, 2, 16.
https://doi.org/10.1186/1742-4690-2-16 |
[29] | Takatsuki, K., Matsuoka, M. and Yamaguchi, K. (1996) Mini Review: Adult T-Cell Leukemia in Japan. JAIDS Journal of Acquired Immune Deficiency Syndromes, 13, S15-S19. https://doi.org/10.1097/00042560-199600001-00004 |
[30] | Gallo, R.C. (2005) The Discovery of the First Human Retrovirus: HTLV-1 and HTLV-2. Retrovirology, 2, 17.
https://doi.org/10.1186/1742-4690-2-17 |
[31] | Barbeau, B. and Mesnard, J.-M. (2011) Making Sense Out of Antisense Transcription in Human T-Cell Lymphotropic Viruses (HTLVs). Viruses, 3, 456-468. https://doi.org/10.3390/v3050456 |
[32] | Mohanty, S. and Harhaj, E.W. (2020) Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens, 9, 543.
https://doi.org/10.3390/pathogens9070543 |
[33] | Gal, J., et al. (2019) The Acetylation of Lysine-376 of G3BP1 Regulates RNA Binding and Stress Granule Dynamics. Molecular and Cellular Biology, 39, e00052-19. https://doi.org/10.1128/MCB.00052-19 |
[34] | Kwon, S., Zhang, Y. and Matthias, P. (2007) The Deacetylase HDAC6 Is a Novel Critical Component of Stress Granules Involved in the Stress Response. Genes & Development, 21, 3381. https://doi.org/10.1101/gad.461107 |
[35] | Gwon, Y., et al. (2021) Ubiquitination of G3BP1 Mediates Stress Granule Disassembly in a Context-Specific Manner. Science, 372, eabf6548. https://doi.org/10.1126/science.abf6548 |
[36] | Legros, S., et al. (2011) The HTLV-1 Tax Protein Inhibits Formation of Stress Granules by Interacting with Histone Deacetylase 6. Oncogene, 30, 4050-4062. https://doi.org/10.1038/onc.2011.120 |
[37] | Takahashi, M., et al. (2013) HTLV-1 Tax Oncoprotein Stimulates ROS Production and Apoptosis in T Cells by Interacting with USP10. Blood: The Journal of the American Society of Hematology, 122, 715-725.
https://doi.org/10.1182/blood-2013-03-493718 |
[38] | Stevenson, M. (2003) HIV-1 Pathogenesis. Nature Medicine, 9, 853-860. https://doi.org/10.1038/nm0703-853 |
[39] | Douek, D.C., et al. (2002) HIV Preferentially Infects HIV-Specific CD4+ T Cells. Nature, 417, 95-98.
https://doi.org/10.1038/417095a |
[40] | Rao, S., et al. (2018) HIV-1 NC-Induced Stress Granule Assembly and Translation Arrest Are Inhibited by the dsRNA Binding Protein Staufen1. RNA, 24, 219-236. https://doi.org/10.1261/rna.064618.117 |
[41] | Valiente-Echeverría, F., et al. (2014) eEF2 and Ras-GAP SH3 Domain-Binding Protein (G3BP1) Modulate Stress Granule Assembly during HIV-1 Infection. Nature Communications, 5, 4819. https://doi.org/10.1038/ncomms5819 |
[42] | Cinti, A., et al. (2016) HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex. MBio, 7, e00329-16. https://doi.org/10.1128/mBio.00329-16 |
[43] | Visseaux, B., et al. (2016) Hiv-2 Molecular Epidemiology. Infection, Genetics and Evolution, 46, 233-240.
https://doi.org/10.1016/j.meegid.2016.08.010 |
[44] | Azevedo-Pereira, J.M. and Santos-Costa, Q. (2016) HIV Interaction with Human Host: HIV-2 as a Model of a Less Virulent Infection. AIDS Reviews, 18, 44-53. |
[45] | Whittle, H., et al. (1994) HIV-2-Infected Patients Survive Longer than HIV-1-Infected Patients. Aids, 8, 1617-1620.
https://doi.org/10.1097/00002030-199411000-00015 |
[46] | Soto-Rifo, R., et al. (2014) HIV-2 Genomic RNA Accumulates in Stress Granules in the Absence of Active Translation. Nucleic Acids Research, 42, 12861-12875. https://doi.org/10.1093/nar/gku1017 |
[47] | Wang, F., et al. (2020) Targeting Stress Granules: A Novel Therapeutic Strategy for Human Diseases. Pharmacological Research, 161, Article ID: 105143. https://doi.org/10.1016/j.phrs.2020.105143 |
[48] | Wang, S., et al. (2021) Targeting Liquid-Liquid Phase Separation of SARS-CoV-2 Nucleocapsid Protein Promotes Innate Antiviral Immunity by Elevating MAVS Activity. Nature Cell Biology, 23, 718-732.
https://doi.org/10.1038/s41556-021-00710-0 |
[49] | Kruse, T., et al. (2021) Large Scale Discovery of Coronavirus-Host Factor Protein Interaction Motifs Reveals SARS-CoV-2 Specific Mechanisms and Vulnerabilities. Nature Communications, 12, 6761.
https://doi.org/10.1038/s41467-021-26498-z |