|
一种可穿戴的低照度视觉增强感知设备
|
Abstract:
在黄昏、夜晚等照度不良条件下,成像设备获取的图像大多呈现低照度特性,视觉上难以有效辨识图像内容。为了提升图像的视觉感知效果,研究开发了一套可穿戴视觉增强感知设备,设备由战术头盔、筒式摄像机、嵌入式处理器、可穿戴显示器等组成,成本低廉、小巧轻便、方便穿戴。同时,通过引入自校准照明模型,使隐藏在低照度图像中难以辨识的信息变得更加清晰可见,且在设备上达到了超实时的处理速度。
Under the condition of poor illumination such as dusk and night, most of the images acquired by imaging equipment present low illumination characteristics, which makes it difficult to effectively identify the image content visually. In order to improve the visual perception effect of images, a set of wearable visual enhanced perception equipment is developed. The equipment is composed of tactical helmet, barrel camera, embedded processor, wearable display, etc., which is low cost, compact, lightweight and easy to wear. At the same time, by introducing the self-calibration illumination model, it makes the difficult information hidden in the low illumination image more clearly visible, and the device achieves super real-time processing speed.
[1] | Ibrahim, H. and Sia Pik Kong, N. (2007) Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement. IEEE Transactions on Consumer Electronics, 53, 1752-1758.
https://doi.org/10.1109/TCE.2007.4429280 |
[2] | Ren, X.T., Yang, W.H., Cheng, W.-H. and Liu, J.Y. (2020) LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model. IEEE Transactions on Image Pro-cessing, 29, 5862-5876.
https://doi.org/10.1109/TIP.2020.2984098 |
[3] | Gu, Z.H., Li, F., Fang, F.M. and Zhang, G.X. (2020) A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light. IEEE Transactions on Image Processing, 29, 3239-3253.
https://doi.org/10.1109/TIP.2019.2958144 |
[4] | Lore, K.G., Akintayo, A. and Sarkar, S. (2017) LLNet: A Deep Autoencoder Approach to Natural Low-Light Image Enhancement. Pattern Recognition, 61, 650-662. https://doi.org/10.1016/j.patcog.2016.06.008 |
[5] | Li, C.Y., Guo, C.L., Han, L.H., et al. (2022) Low-Light Image and Video Enhancement Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 44, 9396-9416.
https://doi.org/10.1109/TPAMI.2021.3126387 |
[6] | Lv, F.F., Lu, F., Wu, J.H. and Lim, C. (2018) MBLLEN: Low-Light Image/Video Enhancement Using CNNs. BMVC 2018, Newcastle upon Tyne, 3-6 September 2018, 220. |
[7] | Zhu, M.F., Pan, P.B., Chen, W. and Yang, Y. (2020) EEMEFN: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network. AAAI 2020, New York, 7-12 February 2020, 13106-13113.
https://doi.org/10.1609/aaai.v34i07.7013 |
[8] | Wei, C., Wang, W.J., Yang, W.H. and Liu, J.Y. (2018) Deep Retinex Decomposition for Low-Light Enhancement. BMVC 2018, Newcastle upon Tyne, 3-6 September 2018, 155. |
[9] | Li, C.Y., Guo, J.C., Porikli, F. and Pang, Y.W. (2018) LightenNet: A Convolutional Neural Network for Weakly Illuminat-ed Image Enhancement. Pattern Recognition Letters, 104, 15-22. https://doi.org/10.1016/j.patrec.2018.01.010 |
[10] | Zhang, Y.H., Zhang, J.W. and Guo, X.J. (2019) Kindling the Darkness: A Practical Low-Light Image Enhancer. Proceedings of the 27th ACM International Conference on Multime-dia, Nice, 21-25 October 2019, 1632-1640.
https://doi.org/10.1145/3343031.3350926 |
[11] | Chen, C., Chen, Q.F., Xu, J. and Koltun, V. (2018) Learning to See in the Dark. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 3291-3300.
https://doi.org/10.1109/CVPR.2018.00347 |
[12] | 李明悦, 晏涛, 井花花, 刘渊. 多尺度特征融合的低照度光场图像增强算法[J/OL]. 计算机科学与探索: 1-14. http://kns.cnki.net/kcms/detail/11.5602.TP.20220507.1144.002.html, 2022-11-29. |
[13] | 包易峰, 杨德刚. 面向低照度图像增强的注意力曝光融合网络[J/OL]. 计算机工程与应用: 1-10.
http://kns.cnki.net/kcms/detail/11.2127.TP.20221011.1636.010.html, 2022-11-28. |
[14] | Jiang, Y.F., Gong, X.Y., Liu, D., et al. (2021) EnlightenGAN: Deep Light Enhancement without Paired Supervision. IEEE Transactions on Image Pro-cessing, 30, 2340-2349. https://doi.org/10.1109/TIP.2021.3051462 |
[15] | 吴佳奇, 张文琪, 陈伟, 王帅. 基于改进CycleGAN的煤矿井下低照度图像增强方法[J/OL]. 华中科技大学学报(自然科学版): 1-10. https://doi.org/10.13245/j.hust.229323, 2022-11-28. |
[16] | Yang, W.H., Wang, S.Q., Fang, Y.M., Wang, Y. and Liu, J.Y. (2020) From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 13-19 June 2020, 3060-3069. https://doi.org/10.1109/CVPR42600.2020.00313 |
[17] | Guo, C.L., Li, C.Y., Guo, J.C., Loy, C.C., et al. (2020) Ze-ro-Reference Deep Curve Estimation for Low-Light Image Enhancement. 2020 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition, Seattle, 13-19 June 2020, 1777-1786. |
[18] | 向森, 王应锋, 邓慧萍, 吴谨, 喻莉. 基于双重迭代的零样本低照度图像增强[J]. 电子与信息学报, 2022, 44(10): 3379-3388. |
[19] | Yu, R.S., Liu, W.Y., Zhang, Y.S., et al. (2018) DeepExposure: Learning to Expose Photos with Asynchronously Reinforced Adversarial Learning. 32nd International Conference on Neural Information Processing Systems (NeurIPS) 2018, Montreal, 3-8 December 2018, 2153-2163. |
[20] | Ma, L., Ma, T.Y., Liu, R.S., Fan, X. and Luo, Z.X. (2022) Toward Fast, Flexible, and Robust Low-Light Image Enhancement. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 18-24 June 2022, 5627-5636. |