全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进储备池计算模型的人体行为识别
Human Activity Recognition Based on Enhanced Reservoir Computing

DOI: 10.12677/CSA.2023.133052, PP. 528-536

Keywords: 储备池计算,回声状态网络,特征融合,人体行为识别
Reservoir Computing (RC)
, Echo State Network, Feature Fusion, Human Activity Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

人体行为识别(human activity recognition, HAR)是元宇宙场景人机交互应用中的关键任务。在基于传感器的HAR任务中,提取有用特征是提高模型性能的关键。为此,本文提出了一种改进的储备池计算网络框架(enhanced reservoir computing network framework, ERCNF)。本文首先使用圆形储备池模块提取信号的特征,然后使用降维模块对提取的特征进行降维,最后使用岭回归器进行线性读出。我们在UCI-HAR和mHealth两个公开数据集上评估ERCNF模型。在UCI-HAR和mHealth数据集上ERCNF模型的准确率分别为98.1%和95.6%。该模型具有训练速度快,准确率高等特点,能有效地从数据中提取深度特征,在可穿戴应用中具有良好的应用前景。
Human activity recognition (HAR) is a critical task in human-machine interaction applications for meta-universe scenarios. Extracting useful features are the keys to improving the model performance in a sensor-based HAR tasks. This paper proposes an enhanced reservoir computing network framework (ERCNF) to address the problems. In this work, the ERCNF model is feature extracted by the circular reservoir topology module, then the extracted features are dimensionally reduced by a dimensionality reduction module, and finally linear readout is performed by a ridge regressor. We evaluate the ERCNF model with two benchmark HAR on the datasets of UCI-HAR and mHealth. The best classification accuracies achieved by the ERCNF model are 98.1% and 95.6% with UCI-HAR and mHealth datasets, respectively. The model has fast training speed and high accuracy, and can effectively extract depth features from the data, which has good application prospects in wearable ap-plications.

References

[1]  Ronao, C.A. and Cho, S.B. (2016) Human Activity Recognition with Smartphone Sensors Using Deep Learning Neural Networks. Expert Systems with Applications, 59, 235-244.
https://doi.org/10.1016/j.eswa.2016.04.032
[2]  Palumbo, F., Gallicchio, C., Pucci, R. and Micheli, A. (2016) Human Activity Recognition Using Multisensor Data Fusion Based on Reservoir Computing. Journal of Ambient Intel-ligence and Smart Environments, 8, 87-107.
https://doi.org/10.3233/AIS-160372
[3]  Ehatisham-Ul-Haq, M., Javed, A., Azam, M.A., Malik, H.M., Irtaza, A., Lee, I.H. and Mahmood, M.T. (2019) Robust Human Activity Recognition Using Multimodal Feature-Level Fusion. IEEE Access, 7, 60736-60751.
https://doi.org/10.1109/ACCESS.2019.2913393
[4]  Nweke, H.F., Teh, Y.W., Mujtaba, G. and Al-Garadi, M.A. (2019) Data Fusion and Multiple Classifier Systems for Human Activity Detection and Health Monitoring: Review and Open Research Directions. Information Fusion, 46, 147-170.
https://doi.org/10.1016/j.inffus.2018.06.002
[5]  Bengio, Y., Simard, P. and Frasconi, P. (1994) Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5, 157-166.
https://doi.org/10.1109/72.279181
[6]  Jaeger, H., Maass, W. and Principe, J. (2007) Special Issue on Echo State Networks and Liquid State Machines. Neural Networks, 20, 287-289.
https://doi.org/10.1016/j.neunet.2007.04.001
[7]  Nyan, M.N., Tay, F.E.H., Seah, K.H.W. and Sitoh, Y.Y. (2006) Classification of Gait Patterns in the Time-Frequency Domain. Journal of Biomechanics, 39, 2647-2656.
https://doi.org/10.1016/j.jbiomech.2005.08.014
[8]  Lin, T., Liu, X., Li, X., Ding, E., & Wen, S. (2019) BMN: Boundary-Matching Network for Temporal Action Proposal Generation. ArXiv: 1907.09702.
[9]  Wang, L.M., Xiong, Y.J., Wang, Z., et al. (2016) Temporal Segment Networks: Towards Good Practices for Deep Action Recognition. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., Computer Vision—ECCV 2016. Lecture Notes in Computer Science, Vol. 9912, Springer, Cham, 22-36.
https://doi.org/10.1007/978-3-319-46484-8_2
[10]  Lan, Z.Z., Zhu, Y., Haupt-mann, A.G. and Newsam, S. (2017) Deep Local Video Feature for Action Recognition. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, 21-26 July 2017, 1219-1225.
https://doi.org/10.1109/CVPRW.2017.161
[11]  Fan, L., Wang, Z. and Wang, H. (2013) Human Activity Recogni-tion Model Based on Decision Tree. 2013 International Conference on Advanced Cloud and Big Data, Nanjing, 13-15 December 2013, 64-68.
https://doi.org/10.1109/CBD.2013.19
[12]  Hu, C., Chen, Y., Hu, L. and Peng, X. (2018) A Novel Random Forests Based Class Incremental Learning Method for Activity Recognition. Pattern Recognition, 78, 277-290.
https://doi.org/10.1016/j.patcog.2018.01.025
[13]  Xiao, Q. and Song, R. (2018) Action Recognition Based on Hi-erarchical Dynamic Bayesian Network. Multimedia Tools and Applications, 77, 6955-6968.
https://doi.org/10.1007/s11042-017-4614-0
[14]  Chathuramali, K.G.M. and Rodrigo, R. (2012) Faster Human Ac-tivity Recognition with SVM. International Conference on Advances in ICT for Emerging Regions (ICTer2012), Co-lombo, 12-15 December 2012, 197-203.
[15]  Jain, A. and Kanhangad, V. (2017) Human Activity Classification in Smartphones Using Accelerometer and Gyroscope Sensors. IEEE Sensors Journal, 18, 1169-1177.
https://doi.org/10.1109/JSEN.2017.2782492
[16]  Liu, R., Wang, Z., Shi, X., et al. (2019) Table Tennis Stroke Recognition Based on Body Sensor Network. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A. and Liotta, A., Eds., Internet and Distributed Computing Systems. IDCS 2019. Lecture Notes in Computer Science, Vol. 11874, Springer, Cham, 1-10.
https://doi.org/10.1007/978-3-030-34914-1_1
[17]  Mutegeki, R. and Han, D.S. (2020) A CNN-LSTM Approach to Human Activity Recognition. 2020 International Conference on Artificial Intelligence in Information and Communica-tion (ICAIIC), Fukuoka, 19-21 February 2020, 362-366.
https://doi.org/10.1109/ICAIIC48513.2020.9065078
[18]  Abudalfa, S., Bouchard, K. (2021). Hybrid Deep-Readout Echo State Network and Support Vector Machine with Feature Selection for Human Activity Recognition. In: Deze, Z., Huang, H., Hou, R., Rho, S. and Chilamkurti, N., Eds., Big Data Technologies and Applications. BDTA WiCON 2020 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 371, Springer, Cham, 150-167.
https://doi.org/10.1007/978-3-030-72802-1_11
[19]  Arigbabu, O.A. (2020) Entropy Decision Fusion for Smartphone Sensor Based Human Activity Recognition. ArXiv: 2006.00367.
[20]  Ogbuabor, G. and La, R. (2018) Human Activity Recognition for Healthcare using Smartphones. Proceedings of the 2018 10th International Conference on Machine Learning and Computing, Macau, 26-28 February 2018, 41-46.
https://doi.org/10.1145/3195106.3195157
[21]  Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S. and Micheli, A. (2013) Multisensor Data Fusion for Activity Recognition Based on Reservoir Computing. In: Botía, J.A., álva-rez-García, J.A., Fujinami, K., Barsocchi, P. and Riedel, T., Eds., Evaluating AAL Systems through Competitive Bench-marking. EvAAL 2013. Communications in Computer and Information Science, Vol. 386, Springer, Berlin, 24-35.
https://doi.org/10.1007/978-3-642-41043-7_3
[22]  Wan, S., Qi, L., Xu, X., Tong, C. and Gu, Z. (2020) Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mobile Networks and Applications, 25, 743-755.
https://doi.org/10.1007/s11036-019-01445-x
[23]  Jaeger, H. (2001) The ‘Echo State’ Approach to Ana-lyzing and Training Recurrent Neural Networks: GMD Report 148. German National Research Center for Information Technology, St. Augustin.
[24]  Jaeger, H., Lukosevicius, M., Popovici, D. and Siewert, U. (2007) Optimization and Applications of Echo State Networks with Leaky-Integrator Neurons. Neural Networks, 20, 335-352.
https://doi.org/10.1016/j.neunet.2007.04.016
[25]  Baydogan, M.G. and Runger, G. (2015) Learning a Symbolic Representation for Multivariate Time Series Classification. Data Mining and Knowledge Discovery, 29, 400-422.
https://doi.org/10.1007/s10618-014-0349-y
[26]  Bianchi, F.M., Scardapane, S., L?kse, S. and Jenssen, R. (2017) Bidirectional Deep-Readout Echo State Networks. ArXiv: 1711.06509.
[27]  Bianchi, F.M., Livi, L., Mikalsen, K.?., Kampffmeyer, M. and Jenssen, R. (2019) Learning Representations of Multivariate Time Series with Missing Data. Pat-tern Recognition, 96, Article ID: 106973.
https://doi.org/10.1016/j.patcog.2019.106973
[28]  L?kse, S., Bianchi, F.M. and Jenssen, R. (2017) Training Echo State Networks with Regularization Through Dimensionality Reduction. Cognitive Computation, 9, 364-378.
https://doi.org/10.1007/s12559-017-9450-z
[29]  Banos, O., Garcia, R., Holgado-Terriza, J.A., Damas, M., Pomares, H., Rojas, I., Saez, A. and Villalonga, C. (2014) mHealthDroid: A Novel Framework for Agile Development of Mobile Health Applications. In: Pecchia, L., Chen, L.L., Nugent, C. and Bravo, J., Eds., Ambient Assisted Living and Daily Activities. IWAAL 2014. Lecture Notes in Computer Science, Vol. 8868, Springer, Cham, 91-98.
https://doi.org/10.1007/978-3-319-13105-4_14
[30]  Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado-Terriza, J.A., Lee, S., Pomares, H. and Rojas, I. (2015) Design, Implementation and Validation of a Novel Open Framework for Agile Development of Mobile Health Applications. BioMedical Engineering OnLine, 14, Article No. S6.
https://doi.org/10.1186/1475-925X-14-S2-S6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133