全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BODIPY类染料荧光发射及应用
Fluorescence Emission and Application of BODIPY

DOI: 10.12677/MS.2023.133028, PP. 238-244

Keywords: BODIPY,荧光染料
BODIPY
, Fluorescent Dye

Full-Text   Cite this paper   Add to My Lib

Abstract:

BODIPY激光染料是现代光化学研究的一个热门主题,因为它的发色团提供了多种选择,可用于多种合成路线。通过BODIPY染料的取代模式来调节光谱性质或诱导新的光物理过程的可能性增加了这些荧光团的科技应用数量,但直到90年代初,由于Boyer及其同事的先驱工作,BODIPY才成为可调谐染料激光器的活跃媒介。这些染料的最佳激光性能是由于它们的化学稳定性、高耐热性、低光降解性,以及主要是它们独特的光物理特征,这些特征深深地依赖于分子结构,总的来说,这种发色团很容易溶于大多数有机介质,其特征是可见光谱的绿–黄部分具有强吸收和荧光光谱带,荧光效率接近100%,且与周围环境的性质无关。20世纪90年代后,BODIPY作为可调谐激光染料的用途得到了推广并扩展到固态,它们还被应用于许多其他科技领域。
BODIPY laser dye is a hot topic in modern photochemical research, because its chromophore provides a variety of options and can be used in a variety of synthetic routes. The possibility of adjusting spectral properties or inducing new photophysical processes through the substitution mode of BODIPY dyes has increased the number of scientific and technological applications of these fluorophores. However, until the early 1990s, due to the pioneering work of Boyer and his colleagues, BODIPY has become the active medium of tunable dye lasers. The best laser performance of these dyes is due to their chemical stability, high heat resistance, low photodegradability, as well as their unique photophysical characteristics. These characteristics are deeply dependent on the molecular structure. In general, this chromophore is easily soluble in most organic media. Its characteristic is that the green-yellow part of the visible spectrum has strong absorption and fluorescence spectral bands, and the fluorescence efficiency is close to 100%. It has nothing to do with the nature of the surrounding environment. After the 1990s, the use of BODIPY as a tunable laser dye has been promoted and extended to solid state. They have also been used in many other scientific and technological fields.

References

[1]  Baruah, M., Qin, W., Vallée, R.A.L., et al. (2005) A Highly Potas-sium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Or-ganic Letters, 7, 4377-4380.
https://doi.org/10.1021/ol051603o
[2]  Rohand, T., Baruah, M., Qin, W., Boens, N. and Dehaen, W. (2006) Func-tionalisation of Fluorescent BODIPY Dyes by Nucleophilic Substitution. Chemical Communications, 42, 266-268.
https://doi.org/10.1039/B512756D
[3]  McDonnell, S.O. and O’Shea, D.F. (2006) Near-Infrared Sensing Proper-ties of Dimethlyamino-Substituted BF2-Aza- dipyrromethenes. Organic Letters, 8, 3493-3496.
https://doi.org/10.1021/ol061171x
[4]  Jiao, C., Huang, K.-W. and Wu, J. (2011) Perylene-Fused BODIPY Dye with Near-IR Absorption/Emission and High Photostability. Organic Letters, 13, 632-635.
https://doi.org/10.1021/ol102879g
[5]  Jiao, L., Yu, C., Liu, M., et al. (2010) Synthesis and Functionalization of Asymmetrical Benzo-Fused BODIPY Dyes. The Journal of Organic Chemistry, 75, 6035-6038.
https://doi.org/10.1021/jo101164a
[6]  Kubota, Y., Uehara, J., Funabiki, K., et al. (2010) Strategy for the Increas-ing the Solid-State Fluorescence Intensity of Pyrromethene-BF2 Complexes. Tetrahedron Letters, 51, 6195-6198.
https://doi.org/10.1016/j.tetlet.2010.09.106
[7]  Ozdemir, T., Atilgan, S., Kutuk, I., et al. (2009) Solid-State Emis-sive BODIPY Dyes with Bulky Substituents as Spacers. Organic Letters, 11, 2105-2107.
https://doi.org/10.1021/ol9005568
[8]  Vu, T.T., Badré, S., Dumas-Verdes, C., et al. (2009) New Hindered BODIPY Derivatives: Solution and Amorphous State Fluorescence Properties. The Journal of Physical Chemistry C, 113, 11844-11855.
https://doi.org/10.1021/jp9019602
[9]  Badré, S., Monnier, V., Méallet-Renault, R., et al. (2006) Fluorescence of Molecular Micro- and Nanocrystals Prepared with Bodipy Derivatives. Journal of Photochemistry and Photobiology A, 183, 238-246.
https://doi.org/10.1016/j.jphotochem.2006.07.002
[10]  Treibs, A., Kreuzer, F.H. and Ann, J.L. (1968) Difluor-boryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Annalen der Chemie, 718, 208-223.
https://doi.org/10.1002/jlac.19687180119
[11]  Hepp, A., Ulrich, G., Schmechel, R., et al. (2004) Highly Efficient Energy Transfer to a Novel Organic Dye in OLED Devices. Synthetic Metals, 146, 11-15.
https://doi.org/10.1016/j.synthmet.2004.06.016
[12]  Guggenheimer, S.C., Boyer, J.H., Thangaraj, K., et al. (1993) Efficient Laser Action from Two Cw Laser-Pumped Pyrromethene-BF2 Complexes. Applied Optics, 32, 3942-3943.
https://doi.org/10.1364/AO.32.003942
[13]  Zhao, W. and Carreira, E.M. (2006) Conformationally Restricted Aza-BODIPY: Highly Fluorescent, Stable Near- Infrared Absorbing Dyes. Chemistry—A European Journal, 12, 7254-7263.
https://doi.org/10.1002/chem.200600527
[14]  Li, F., Yang, S.I., Ciringh, Y., et al. (1998) Design, Synthesis, and Photodynamics of Light-Harvesting Arrays Comprised of a Porphyrin and One, Two, or Eight Boron-Dipyrrin Acces-sory Pigments. Journal of the American Chemical Society, 120, 10001-10017.
https://doi.org/10.1021/ja9812047
[15]  Ba?uelos, J. (2016) BODIPY Dye, the Most Versatile Fluorophore Ever? The Chemical Record, 16, 335-348.
[16]  Zhang, D., Wen, Y., Xiao, Y., et al. (2008) Bulky 4-Tritylphenylethynyl Sub-stituted Boradiazaindacene: Pure Red Emission, Relatively Large Stokes Shift and Inhibition of Self-Quenching. Chemi-cal Communications, No. 39, 4777- 4779.
https://doi.org/10.1039/b808681h
[17]  Qin, W., Baruah, M., Van der Auweraer, M., et al. (2005) Photophysical Properties of Borondipyrromethene Analogues in Solution. The Journal of Physical Chemistry A, 109, 7371-7384.
https://doi.org/10.1021/jp052626n
[18]  Savoldelli, A., Meng, Q., Paolesse, R., et al. (2018) Tetrafluorobenzo-Fused BODIPY: A Platform for Regioselective Synthesis of BODIPY Dye Deriva-tives. The Journal of Organic Chemistry, 83, 6498-6507.
https://doi.org/10.1021/acs.joc.8b00789
[19]  Benniston, A.C. and Copley, G. (2009) Lighting the Way Ahead with Boron Dipyrromethene (Bodipy) Dyes. Physical Chemistry Chemical Physics, 11, 4124-4131.
https://doi.org/10.1039/b901383k
[20]  Wang, E., Qiao, H., Zhou, Y.M., et al. (2015) A Novel “Turn-On” Fluorogenic Probe for Sensing Hypochlorous Acid Based on BODIPY. RSC Advances, 5, 73040-73045.
https://doi.org/10.1039/C5RA14118D
[21]  Gibbs, J.H., Robins, L.T., Zhou, Z., et al. (2013) Spectroscopic, Computa-tional Modeling and Cytotoxicity of a Series of Meso-Phenyl and Meso-Thienyl-BODIPYs. Bioorganic & Medicinal Chemistry, 21, 5770-5781.
https://doi.org/10.1016/j.bmc.2013.07.017
[22]  Chu, G.M., Guerrero-Martinez, A., Fernandez, I. and Sierra, M.A. (2014) Tuning the Photophysical Properties of BODIPY Molecules by π-Conjugation with Fischer Carbene Complexes. Chemistry—A European Journal, 20, 1367-1375.
https://doi.org/10.1002/chem.201303952
[23]  Waddell, P.G., Liu, X., Zhao, T. and Cole, J.M. (2015) Rationalizing the Photophysical Properties of BODIPY Laser Dyes via Aromaticity and Electron-Donor-Based Structural Perturbations. Dyes and Pigments, 116, 74-81.
https://doi.org/10.1016/j.dyepig.2015.01.010
[24]  Rahn, M.D. and King, T. (1995) Comparison of Laser Performance of Dye Molecules in Sol-Gel, Polycom, Ormosil, and Poly(methyl methacrylate) Host Media. Applied Optics, 34, 8260-8271.
https://doi.org/10.1364/AO.34.008260
[25]  Zatsikha, Y.V., Maligaspe, E., Purchel, A.A., et al. (2015) Tun-ing Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs. Inorganic Chemistry, 54, 7915-7928.
https://doi.org/10.1021/acs.inorgchem.5b00992
[26]  Yariv, E., Schultheiss, S. and Saraidarov, T. (2001) Efficiency and Photostability of Dye-Doped Solid-State Lasers in Different Hosts. Optical Materials, 16, 29-38.
https://doi.org/10.1016/S0925-3467(00)00056-2
[27]  Thorat, K.G., Kamble, P., Mallah, R., et al. (2015) Congeners of Pyrromethene-567 Dye: Perspectives from Synthesis, Photophysics, Photostability, Laser, and TD-DFT Theory. The Journal of Organic Chemistry, 80, 6152-6164.
https://doi.org/10.1021/acs.joc.5b00654
[28]  Costela, A., Garc?a-Moreno, I. and Sastre, R. (2003) Polymeric Solid-State Dye Lasers: Recent Developments. Physical Chemistry Chemical Physics, 5, 4745-4763.
https://doi.org/10.1039/B307700B
[29]  Ulrich, G., Ziessel, R. and Harriman, A. (2008) The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47, 1184-1201.
https://doi.org/10.1002/anie.200702070
[30]  Benstead, M., Mehl, G.H. and Boyle, R.W. (2011) 4,4’-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as Components of Novel Light Active Materials. Tetrahedron, 67, 3573-3601.
https://doi.org/10.1016/j.tet.2011.03.028
[31]  Boens, N., Leen, V. and Dehaen, W. (2012) Fluo-rescent Indicators Based on BODIPY. Chemical Society Reviews, 41, 1130-1172.
https://doi.org/10.1039/C1CS15132K
[32]  Cerdan, L., Enciso, E., Mart?n, V., et al. (2012) FRET-Assisted Laser Emission in Colloidal Suspensions of Dye-Doped Latex Nanoparticles. Nature Photonics, 6, 621-626.
https://doi.org/10.1038/nphoton.2012.201
[33]  Wan, C.W., Burghart, A., Chen, J., et al. (2003) Anthracene-BODIPY Cassettes: Syntheses and Energy Transfer. Chemistry—A European Journal, 9, 4430-4441.
https://doi.org/10.1002/chem.200304754
[34]  Sunahara, H., Urano, Y., Kojima, H. and Nagano, T. (2007) Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron-Transfer-Controlled Fluorescence ON/OFF Switching. Journal of the American Chemical Society, 129, 5597-5604.
https://doi.org/10.1021/ja068551y
[35]  Souza, F.D., Smith, P.M., Zandler, M.E., et al. (2004) Energy Transfer Followed by Electron Transfer in a Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin, and Fullerene:? A Model for the Photosynthetic Antenna-Reaction Center Complex. Journal of the American Chemical Society, 126, 7898-7907.
https://doi.org/10.1021/ja030647u
[36]  Bozdemir, O.A., Cakmak, Y., Sozmen, F., et al. (2010) Synthesis of Sym-metrical Multichromophoric Bodipy Dyes and Their Facile Transformation into Energy Transfer Cassettes. Chemistry—A European Journal, 16, 6346-6351.
https://doi.org/10.1002/chem.200903449
[37]  Iehl, J., Nierengarten, J.F., Harriman, A., et al. (2012) Artificial Light-Harvesting Arrays: Electronic Energy Migration and Trapping on a Sphere and between Spheres. Journal of the American Chemical Society, 134, 988-998.
https://doi.org/10.1021/ja206894z
[38]  Qian, X., Xiao, Y., Xu, Y., et al. (2010) “Alive” Dyes as Flu-orescent Sensors: Fluorophore, Mechanism, Receptor and Images in Living Cells. Chemical Communications, 46, 6418-6436.
https://doi.org/10.1039/c0cc00686f
[39]  Miao, W., Guo, X., Yan, X., et al. (2023) Red-to-Near-Infrared Emitting pyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry, 29, e202203832.
[40]  Fan, J., Hu, M., Zhan, P. and Peng, X. (2013) Energy Transfer Cassettes Based on Organic Fluorophores: Construction and Applications in Ratiometric Sensing. Chemical Society Reviews, 42, 29-43.
https://doi.org/10.1039/C2CS35273G
[41]  Loudet, A. and Burgess, K. (2007) BODIPY Dyes and Their Derivatives:? Syntheses and Spectroscopic Properties. Chemical Reviews, 107, 4891-4932.
https://doi.org/10.1021/cr078381n
[42]  Fu, Y.L., Chong, Y.Y., Li, H., Feng, W. and Song, Q.H. (2021) Sensitive and Visual Detection of Phosgene by a TICT-Based BODIPY Dye with 8-(o-Hydroxy)aniline as the Active Site. Chemistry—A European Journal, 27, 4977.
https://doi.org/10.1002/chem.202005169
[43]  Franke, J.M., Raliski, B.K., Boggess, S.C., et al. (2019) BODIPY Fluorophores for Membrane Potential Imaging. Journal of the American Chemical Society, 141, 12824-12831.
https://doi.org/10.1021/jacs.9b05912
[44]  Ziessel, R., Ulrich, G. and Harriman, A. (2007) The Chemistry of Bodipy: A New El Dorado for Fluorescence Tools. New Journal of Chemistry, 31, 496-501.
https://doi.org/10.1039/b617972j
[45]  Shen, Z., R?hr, H., Rurack, K., et al. (2004) Boron-Diindomethene (BDI) Dyes and Their Tetrahydrobicyclo Precursors—En Route to a New Class of Highly Emissive Fluorophores for the Red Spectral Range. Chemistry—A European Journal, 10, 4853-4871.
https://doi.org/10.1002/chem.200400173
[46]  Zhang, Y., Zheng, Y.T., Meana, Y. and Raymo, F.M. (2021) BODIPYs with Photoactivatable Fluorescence. Chemistry—A European Journal, 27, 11257-11267.
https://doi.org/10.1002/chem.202101628

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133